
1

Acamar
Evaluation

Acamar: A Dynamically Reconfigurable Scientific
Computing Accelerator for Robust Convergence

and Minimal Resource Underutilization
Ubaid Bakhtiar, Helya Hosseini and Bahar Asgari

University of Maryland College Park, Department of Computer Science

Statically Programmed:

Matrix Structure Unit: Selects the most

suitable solver based on the structural

properties of the coefficient matrix.

Initialize Unit: Executes the pre-loop

instructions of the solver.

Fine-grained Reconfigurable Unit:

• Row-Length Trace Unit: Optimizes

resource allocation for sparse

computation units by adjusting the

unroll factor based on average row

length

• MSID-Chain Unit: Updates the unroll

factor only when successive values

differ beyond a set tolerance

Solver Modifier: In case of divergence,

this unit activates and selects the

appropriate solver for reconfiguring the

Reconfigurable Solver unit.

Dynamically Reconfigurable:

Reconfigurable Solver unit: Configures

one of three solvers based on matrix

structure analysis, reconfiguring the

Dynamic SpMV kernel as needed to

optimize resource utilization for sparse

computations.

• Continues processing until convergence,

when the solution is stored or triggers the

Solver Modifier if divergence occurs.

Acamar has two fundamental architectural categories based on how they map on FPGA:

Acamar is an FPGA-based accelerator that is dynamically reconfigured to

match the computations required by the solver suitable for a given coefficient

matrix offering a robust convergence for diverse datasets.

Key insight

Speedup: 11.61× compared to a baseline implementation of SpMV with a single MAC

unit. Improvements diminish as we allocate more resources in the baseline

Conclusions

Resource Underutilization:

• Improve up to 3× in Acamar as

compared to the static design

of the baseline.

• On average Acamar is

underutilized 50% compared to

81% underutilized GPU

• This paper introduces Acamar, a dynamically reconfigurable FPGA-based

accelerator designed for various scientific computing workloads, which overcomes

the limitations of static designs by adapting to different coefficient matrix structures.

• By enabling seamless transitions between solvers like JB, CG, and BiCG-STAB,

along with the optimized SpMV unit and an efficient MSID chain to reduce

reconfiguration overhead, Acamar enhances resource utilization and represents a

significant advancement in adaptive design space architectures for real-time

scientific problem-solving.

Performance Efficiency:

• Measured as number of floating

point operations (FLOPS) per

square millimeter area of FPGA

fabric

• On average , Acamar achieves

720 𝐺𝐹𝐿𝑂𝑃𝑆/𝑚𝑚2performance

efficiency.

Allowed Reconfiguration Time:

• This figure shows the bounds

within which the reconfiguration

must be done to ensure that

Acamar incurs the same or less

latency as the baseline.

• Modern supercomputers operate at <5% peak

performance on real-world scientific tasks revealing

significant underutilization.

• Domain-specific architectures (DSAs) have been explored

to boost scientific computing efficiency

• Iterative solvers are used to tackle diverse scientific

computing problems with varying structural characteristics

in matrices.

Introduction

𝐴 Ԧ𝑥 = 𝑏

Ԧ𝑥 : Solution Vector

𝑏 : Constant Vector
𝐴 : Coefficient Matrix

representation

Solution Divergence: Not every solver guarantee convergence for all types of coefficient

matrices. The convergence criteria for the solvers used in Acamar are:

• JB: Strictly diagonally dominant coefficient matrix A.

• CG: Symmetric and positive-definite coefficient matrix A.

• BiCG-STAB: Non-symmetric coefficient matrix A.

Resource Underutilization (R.U): SpMV operations results in uneven resource utilization

due to the irregular distribution of non-zero values, leading to sub-optimal performance.

State-of-the-art accelerators assume that

• A given solver is suitable for all types of coefficient matrices.

• SpMV is uniformly efficient.

Challenges

Unreliable

Assumptions

Simulation: Cycle-accurate simulator

based on HLS implementation on AMD

Xilinx Alveo U55c

Computing Precision: 32bit

Convergence Threshold: 10−5

Setup Time: 200 Iterations

Datasets: SuiteSparse Collection

Experimental Setup

Fine-Grained Reconfiguration Unit Parameters

• rOpt: Number of stages in MSID-chain. As shown in the figure below, the
reconfiguration rate becomes constant after rOpt = 8

• Sampling Rate: Number of sets of rows in coefficient matrix A. It is set to 32

in our experiments

• Tolerance: Tunes the tolerance level of the MSID-chain unit (tolerance > 0.5

can result in a lower reconfiguration rate but possibly wasted resources). In
our experiments, tolerance = 0.15.

Baselines:

• A static design with fixed number of allocated resources

• SpMV implementation in the cuSparse library on Nvidia GTX 1650 Super

running on Cuda v11.6. We used the Nvidia Nsight toolkit to run GPU evaluation.

	Slide 1

