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Statically Programmed:

Matrix Structure Unit: Selects the most 

suitable solver based on the structural 

properties of the coefficient matrix.

Initialize Unit: Executes the pre-loop 

instructions of the solver.

Fine-grained Reconfigurable Unit:

• Row-Length Trace Unit: Optimizes 

resource allocation for sparse 

computation units by adjusting the 

unroll factor based on average row 

length

• MSID-Chain Unit: Updates the unroll 

factor only when successive values 

differ beyond a set tolerance

Solver Modifier: In case of divergence, 

this unit activates and selects the 

appropriate solver for reconfiguring the 

Reconfigurable Solver unit.

Dynamically Reconfigurable:

Reconfigurable Solver unit: Configures 

one of three solvers based on matrix 

structure analysis, reconfiguring the 

Dynamic SpMV kernel as needed to 

optimize resource utilization for sparse 

computations.

• Continues processing until convergence, 

when the solution is stored or triggers the 

Solver Modifier if divergence occurs.

Acamar has two fundamental architectural categories based on how they map on FPGA:

Acamar is an FPGA-based accelerator that is dynamically reconfigured to 

match the computations required by the solver suitable for a given coefficient 

matrix offering a robust convergence for diverse datasets.

Key insight

Speedup: 11.61× compared to a baseline implementation of SpMV with a single MAC 

unit. Improvements diminish as we allocate more resources in the baseline

Conclusions

Resource Underutilization:

• Improve up to 3× in Acamar as 

compared to the static design 

of the baseline. 

• On average Acamar is 

underutilized 50% compared to 

81% underutilized GPU

• This paper introduces Acamar, a dynamically reconfigurable FPGA-based 

accelerator designed for various scientific computing workloads, which overcomes 

the limitations of static designs by adapting to different coefficient matrix structures.

• By enabling seamless transitions between solvers like JB, CG, and BiCG-STAB, 

along with the optimized SpMV unit and an efficient MSID chain to reduce 

reconfiguration overhead, Acamar enhances resource utilization and represents a 

significant advancement in adaptive design space architectures for real-time 

scientific problem-solving.

Performance Efficiency:

• Measured as number of floating 

point operations (FLOPS) per 

square millimeter area of FPGA 

fabric

• On average , Acamar achieves 

720 𝐺𝐹𝐿𝑂𝑃𝑆/𝑚𝑚2performance 

efficiency.

Allowed Reconfiguration Time:

• This figure shows the bounds 

within which the reconfiguration 

must be done to ensure that 

Acamar incurs the same or less 

latency as the baseline.

• Modern supercomputers operate at  <5% peak 

performance on real-world scientific tasks revealing 

significant underutilization.

• Domain-specific architectures (DSAs) have been explored 

to boost scientific computing efficiency

• Iterative solvers are used to tackle diverse scientific 

computing problems with varying structural characteristics 

in matrices.

Introduction

𝐴 Ԧ𝑥 = 𝑏

Ԧ𝑥 : Solution Vector

𝑏 : Constant Vector
𝐴 : Coefficient Matrix

representation

Solution Divergence: Not every solver guarantee convergence for all types of coefficient 

matrices. The convergence criteria for the solvers used in Acamar are: 

• JB: Strictly diagonally dominant coefficient matrix A.

• CG: Symmetric and positive-definite coefficient matrix A.

• BiCG-STAB: Non-symmetric coefficient matrix A.

Resource Underutilization (R.U): SpMV operations results in uneven resource utilization 

due to the irregular distribution of non-zero values, leading to sub-optimal performance.

State-of-the-art accelerators assume that 

• A given solver is suitable for all types of coefficient matrices.

• SpMV is uniformly efficient.

Challenges

Unreliable 

Assumptions

Simulation: Cycle-accurate simulator 

based on HLS implementation on AMD 

Xilinx Alveo U55c

Computing Precision: 32bit

Convergence Threshold: 10−5

Setup Time: 200 Iterations

Datasets: SuiteSparse Collection

Experimental Setup

Fine-Grained Reconfiguration Unit Parameters

• rOpt: Number of stages in MSID-chain. As shown in the figure below, the 
reconfiguration rate becomes constant after rOpt = 8

• Sampling Rate: Number of sets of rows in coefficient matrix A. It is set to 32 

in our experiments

• Tolerance: Tunes the tolerance level of the MSID-chain unit (tolerance > 0.5 

can result in a lower reconfiguration rate but possibly wasted resources). In 
our experiments, tolerance = 0.15.

Baselines:

• A static design with fixed number of allocated resources

• SpMV implementation in the cuSparse library on Nvidia GTX 1650 Super 

running on Cuda v11.6. We used the Nvidia Nsight toolkit to run GPU evaluation. 
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