Pipirima: Predicting Patterns in Sparsity to Accelerate Matrix Algebra

Ubaid Bakhtiar, Donghyeon Joo, and Bahar Asgari University of Maryland, College Park

INTRODUCTION

Sparse matrix compression

Prevalence of sparsity across domains

1 2 0 3

Key Benefits:

Compression

Sparse kernels

Sparse A

Load imbalance

CSR

Format

Irregular memory accesses **Key Challenges:** Decompression Overhead

PREDICTION MECHANISM

D/R Matrix Predictor

It predicts if the sparse matrix has a random sparsity pattern or diagonal sparsity pattern.

State Diagram:

1: Random Matrix 0: Diagonal Matrix

NNZ/row Predictor

It predicts the number of non-zeros values per row. The decision is made based on the NNZ values in the subsequent row.

State Diagram:

C: current NNZ/row N: new NNZ/row

CHALLENGE: FINE-GRAINED LOAD IMBALANCE

a. No distribution-Serial Placement of nonzero values results in bottlenecks

b. Sub-par parallelism due to non-zero distribution among two memory partitions

non-zero distribution

ARCHITECTURE OF PIPIRIMA

OBSERVATION: STRUCTURAL COHERENCE

Observation 1. On average **78-85**% of the rows are homogeneous to their last u neighbors in terms of NNZ.

Row homogeneity % for the last "u" neighbors of SuiteSparse workloads

Observation 2. The non-zeros location in strictly diagonal matrix is pre-determined and we can skip decompressing them.

EVALUATION

Speedup

Mispredictions v. Density

Overhead of Prediction Components

Area and Power

Pipirima takes 5. $621mm^2$ area and 544.9mW power with prediction related components taking only 0.15% and 0.54%

KEY INSIGHT

- ✓ To enable fine-grained load imbalance, Pipirima predicts the NNZ values for the current block based on history of previous blocks (Similar to branch predictors in CPUs).
- Using such a simple predictor, by just reading a single counter, Pipirima distribute them evenly as values and indices are streamed from memory.