
Acamar: A Dynamically Reconfigurable Scientific
Computing Accelerator for Robust Convergence

and Minimal Resource Underutilization
Ubaid Bakhtiar, Helya Hosseini and Bahar Asgari

University of Maryland, College Park
Email: {ubaidb, helia, bahar}@umd.edu

Abstract—Although modern supercomputers are capable of
delivering Exaflops now, they do not always achieve their peak
performance. For instance, even today’s high-end supercom-
puters achieve only less than 5% of their peak FLOPS when
running HPCG, a benchmark designed to represent real-world
scientific computing programs. To improve the efficiency of the
key kernels in scientific computing, such as those used in solving
partial differential equations, computer architects have begun to
expand the applications of domain-specific architectures (DSAs)
to scientific computing. However, DSAs that often have a fixed
design are not likely to be practical solutions, as one specialized
solution cannot fit all the diverse scientific computing workloads,
making them less effective. The challenges of hardware inef-
ficiency in today’s supercomputers and the ineffectiveness of
DSAs are further exacerbated by sparsity, a key characteristic
of scientific computing workloads. While prior studies have
proposed DSA solutions for sparse computations, they too are
static and not adaptable to variations in the patterns and levels
of sparsity across different scientific workloads. To address these
challenges and target not only the diversity of computations
in such workloads but also variations in sparsity, we propose
Acamar, a dynamically reconfigurable accelerator. Acamar is
adaptable to various solvers across different workloads and
dynamically optimizes the trade-off between resource utilization
and latency for sparse computations. The adaptable design
also enables selecting a solver that guarantees convergence. We
evaluate Acamar based on its Vitis HLS implementation on Xilinx
Alveo u55c. Our experiments show a resource utilization and
latency improvement up to 3.5× and 6× as well as improved
performance efficiency and achieved throughput over a static
design and Nvidia GTX 1650 Super.

I. INTRODUCTION

Scientific computing [20], [24], [26], [30], [78] has long
served as a catalyst for groundbreaking advancements in
computer systems. The significance of scientific computing
problems lies in their direct applicability to real-world scenar-
ios. From simulating fluid dynamics and electromagnetics to
tackling combinatorial challenges and aeronautical calculus,
diverse domains have fueled the need for high-speed compu-
tational capabilities. For years, supercomputers equipped with
CPUs and more recently GPUs have been used for running
scientific computing workloads. While the peak performance
of modern supercomputers have now reached to Exaflops,
they still cannot utilize their full capability when they run
scientific workloads. For instance, Fugaku and Frontier, the
two top-ranked supercomputers based on High Performance
Conjugate Gradients (HPCG) [27], [77] ranking in 2023,

achieve 3.6% and 1.1% of their peak performance when
running this benchmark. These numbers suggest that the
extreme inefficient utilization of the potential of computing
resources is more alarming in the post Moore’s Law era –
when translating technology scaling to performance scaling is
more challenging than before.

During the past decade, after witnessing the success of
domain-specific architectures (DSAs) for machine learning
and artificial intelligence [2], [3], [7], [59], [86], computer
architects have expanded the reach of DSAs to scientific
computing by proposing various techniques and utilizing a
range of technologies such as analog computing [19], [25],
[31], processing-in-memory [11], [12], [73], wafer-scale pro-
cessors [36], [60], and FPGAs [13], [17], [35], [79]. Before
undertaking the development of optimized computing solu-
tions, understanding the intricacies of scientific phenomena
and their numerous parameters is essential. As mathematics
offers means of simplifying complex scientific problems into
more manageable algebraic forms, computer architects have
primarily concentrated on accelerating and optimizing these
relatively simplified representations of the problem, leveraging
the power of mathematics to streamline their approach. How-
ever, sparse matrices of various sizes are inherent in these
mathematical simplifications. For instance, partial differen-
tial equations (PDEs) employed in engineering applications
undergo discretization through techniques such as finite el-
ement method (FEM) and finite difference method (FDM).
Discretization transforms the original problem into a standard
linear algebra form represented as Ax = b, where A is a
highly sparse coefficient matrix, b is a constant vector, and x
is the sought-after solution. Similar to PDEs, numerous other
scientific computing problems can also be transformed into the
Ax = b representation, making this simplified algebraic form
a cornerstone of accelerated scientific computing research.

To solve Ax = b several contributions have been made
by both the mathematicians [14], [16], [62]–[66], [74], [83]
and computer scientists, wherein the main role of the for-
mer is to develop sophisticated yet accurate mathematical
algorithms (a.k.a. solvers) and the latter is responsible for
their accelerated and efficient implementation on computer
systems. The primary kernel in these solvers is sparse matrix-
vector multiplication (SpMV). General-purpose hardware such
as CPU and GPU provides solutions to Ax = b problems,

1

but they often lack efficiency in terms of resource utilization.
The suboptimal performance is primarily attributed to the
sparse and unpredictable structure of the coefficient matrix
A resulting in poor performance of the SpMV kernel. To
address these challenges, various application-specific archi-
tectures have been proposed [12], [25], [45], [54], [73].
These architectures aim to efficiently handle sparse coefficient
matrices, leading to accelerated sparse computations (e.g.,
SpMV) and, as a result, faster implementation of various
algorithms. However, we have identified two major limitations
in state-of-the-art accelerators: (i) lack of generality (ii) static
design. These accelerators operate under the assumption that
any Ax = b problem can converge to a solution using a
specific solver regardless of the structural properties of the
coefficient matrix A. Practically, matrix A needs to have
a specific structure for it to converge to a solution using
the underlying solver. Additionally, these accelerators employ
static accelerator designs that cannot adapt based on the
specific structure of matrix A, resulting in inefficient resource
utilization in the SpMV kernel.

These challenges necessitate an efficient hardware solution
capable of achieving convergence for any structure of co-
efficient matrix A while dynamically adapting to maximize
resource utilization. To deal with these challenges, we propose
Acamar1, a dynamically reconfigurable FPGA-based design
that has the ability to not only reconfigure the FPGA fabric to
different solvers but also reconfigure the sparse computational
unit based on the structural properties of coefficient matrix A.
To achieve this, Acamar can seamlessly switch between three
widely used iterative solvers: Jacobi iterative method (JB),
conjugate gradient (CG), and bi-conjugate gradient-stabilized
(BiCG-STAB). Moreover, Acamar can reconfigure the sparse
computational unit, to ensure enhanced resource utilization.
Our accelerator also offers a multi-level iterative decision
chain to minimize the reconfiguration rate so as to incur less
reconfiguration overhead. Acamar is an FPGA-based design
owing to the ability of FPGAs to offer partial dynamic recon-
figuration. We have modeled Acamar based on its Vitis HLS
implementation on Xilinx Alveo u55c. Our experiments have
shown an improvement in resource utilization and performance
over a static design and Nvidia GTX 1650 Super GPU.

To the best of our knowledge this is the first work to
leverage the partial dynamic reconfiguration ability of FPGAs
to improve resource efficiency in scientific computing. In
summary, this paper contributes the following:

• Robust Convergence. We show that a solver might not
converge to a solution based on the properties of the
coefficient matrix A, necessitating the need for a robust
convergence accelerator, that is, Acamar.

• Dynamic Fine-Grained Reconfiguration. We propose a
reconfigurable accelerator that has the ability to switch
between solvers as well as optimize the sparse compu-

1Acamar /’æk@ma:r/ is a binary star system in the constellation of Eridanus.

tations by fine-grained reconfiguration of the SpMV unit
based on the structure of the coefficient matrix.

• Low Reconfiguration Overhead. To optimize the recon-
figuration rate of SpMV unit and reduce the reconfigu-
ration overhead, we propose an inexpensive yet effective
multi-stage iterative decision chain.

II. SYSTEM OF LINEAR EQUATIONS

This section first introduces the use cases of the systems
of linear equations (i.e. Ax = b) in scientific computing, and
then reviews the various solvers used in these applications,
summarizing their key features, major computations and main
drawbacks in their hardware deployment.

A. Representing Problems in Ax=b

Scientific computing problems are typically simplified into
a concise Ax = b representation, where b represents a constant
vector and x denotes the sought-after solution vector. The
pivotal component of this equation is the coefficient matrix
A, which commonly exhibits high sparsity and encapsulates
the parameters of the underlying scientific application. Several
streams of scientific computing problems can be mapped to the
Ax = b form. Here we touch upon some of them:

• PDE Solvers. Majority of the engineering problems
boil down to multi-dimensional equations with multiple
unknown variables and their partial derivatives. These
equations are called PDEs. PDEs provide a mathematical
framework for understanding phenomena such as heat
transfer, fluid dynamics, electromagnetism, and wave
propagation. They are used to model the behavior of
structural components, electrical circuits, and power sys-
tems. Owing to their manifestation in diverse fields, a
notable volume of research work exist on their efficient
solutions [42], [71], [74]. One of the most widely used
methods to solve PDEs is their reduction to Ax = b
form via discretization of the independent and dependent
variable domains with a certain grid size.

• Optimization Problems. These problems play a crucial
role across various disciplines because of their ability
to efficiently allocate resources, minimize costs, maxi-
mize efficiency, and find optimal solutions to complex
decision-making problems. Some optimization problems
include linear programming, network flow optimization,
and linear regression. They optimize a linear objective
function subject to linear equality and/or inequality con-
straints. The constraints can often represented in terms of
Ax = b form, where x is the vector of decision variables.

• Graph Theory. Graphs are data structures used to rep-
resent relationship between objects or entities in various
applications. One of the classical applications of graph
theory is the place and route problem of electrical circuits.
Several aspects of graph theory can be encapsulated in the
Ax = b form. For example, the spanning tree problems
can be modeled as Ax = b problems to represent the con-
straints imposed by the spanning tree. In spectral graph
theory, properties of the Laplacian matrix are studied to

2

understand the behavior of the graph. The eigenvalues
and eigenvectors of the Laplacian matrix can be used to
solve Ax = b systems, where A is the Laplacian matrix
and b is a vector representing graph constraints.

B. Solving Ax=b

Now that the importance of Ax = b representation is
established, this section discusses the methods to solve it.
There are two primary categories of Ax = b solvers:

Direct Methods. To solve the equation Ax = b, these
methods rely on decomposing the coefficient matrix A into
simpler representations to find the solution vector x. These
methods guarantee an exact solution but can be computation-
ally expensive, especially for large and sparse matrices. Some
common direct methods include LU decomposition, Cholesky
decomposition, and QR decomposition. These methods de-
compose A into factors such as lower triangular matrices,
upper triangular matrices, or orthogonal matrices, which can
then be used to efficiently solve the system of equations.
However, because of their computational cost, direct methods
are not always practical for scientific applications that involve
large and sparse matrices.

Iterative Methods. These methods start with an initial
guess of x and iteratively update the solution vector until
a convergence criterion is met. Rather than pursuing an ex-
act solution, these methods rely on finding the approximate
solution within a certain threshold by changing the search
direction every iteration. Iterative methods exhibit favorable
convergence properties, often outperforming direct methods in
terms of computational efficiency and memory usage. Some
frequently-used iterative solvers include the Jacobi (JB) and
the Gauss-Seidel iterative method, which are relatively simple
yet effective. There also exist .more sophisticated iterative
solvers based on Krylov subspace methods, such as conjugate
gradient (CG), bi-conjugate gradient stabilized (BiCG-STAB),
and general methods of residuals (GMRES).

Algorithm 1 Jacobi Iterative Method (JB)

1: given b := resultV ector
2: initialize x0 := 0
3: L := lowerTriangular(A)
4: U := UpperTriangular(A)
5: D−1 := inverseDiagonal(A)
6: T := D−1(L+ U)
7: c := D−1.b
8: for j = 0, 1, . . ., until convergence do
9: xj+1 := c− T.xj

10: end for

Algorithm 2 Conjugate Gradient (CG)

1: given b := resultV ector
2: Compute r0 := b−Ax0, p0 := r0
3: for j = 0, 1, . . ., until convergence do
4: αj := (rj , rj)/(Apj , pj)
5: xj+1 := xj + αjpj
6: rj+1 := rj − αjApj
7: βj := (rj+1, rj+1)/(rj , rj)
8: pj+1 := rj+1 + βjpj
9: end for

Algorithm 3 Bi-Conjugate Gradient-Stabilized (BiCG-STAB)

1: given b := resultV ector
2: Compute r0 := b−Ax0; r∗0 arbitrary;
3: p0 := r0.
4: for j = 0, 1, . . ., until convergence do
5: αj :=

(
rj ,r

∗
0

Apj ,r∗0

)
6: sj := rj − αjApj

7: ωj :=
(

Asj ,sj
Asj ,Asj

)
8: xj+1 := xj + αjpj + ωjsj
9: rj+1 := sj − ωjAsj

10: βj :=
(

rj+1,r
∗
0

rj ,r∗0

)
× αj

ωj

11: pj+1 := rj+1 + βj(pj − ωjApj)
12: end for

In this paper, our focus is exclusively on iterative methods,
particularly the JB, CG, and BiCG-STAB, the algorithms
of which are shown respectively in Algorithm 1, 2, and
3. JB Method (Algorithm 1) is a straightforward iterative
approach that discretizes a PDE into a linear system and then
solves it. It updates each variable independently based on
the current estimates of the other variables, using a process
of iteration until convergence. Since the JB method updates
each variable independently, it is simple but can be slow
to converge, particularly for large systems. Similarly, CG
(Algorithm 2) also begins by discretizing the PDE into a linear
system, specifically targeting symmetric and positive-definite
matrices. Unlike the JB method, CG uses conjugate directions
to accelerate convergence. This method is more sophisticated
and generally converges faster than JB by effectively reduc-
ing the error along successive orthogonal directions. Finally,
BiCG-STAB (Algorithm 3) extends the CG method to handle
non-symmetric linear systems, which are common in more
complex scientific problems. It combines the approaches of
Bi-Conjugate Gradient and additional stabilization techniques
to enhance the convergence rate. This method seeks to retain
the fast convergence properties of CG while addressing the
oscillatory convergence issues that may arise in non-symmetric
systems, unlike the more stable but slower JB method.

III. CHALLENGES & MOTIVATION

The combination of our three selected iterative solvers, JB,
CG, and BiCG-STAB, collectively offers a robust solution
space that addresses a vast majority of situations encountered

3

TABLE I: Structural requirements on coefficient matrix A for convergence.

Solver Convergence Criteria Solver Convergence Criteria
Jacobi Strictly Diagonally Dominant Gauss-Seidel Strictly Diagonally Dominant

Successive Over Relaxation Symmetric, Positive Definite CG Symmetric, Positive Definite
Preconditioned CG Negative Definite Conjugate Residual Hermition

BiCG Non-symmetric BiCG-Stablized Non-symmetric
Two Sided Lanczos Non-symmetric General Method Symmetric and Non-symmetric,

Concus, Golub and Widlund Nearly symmetric, Positive Definite of Residual Positive Definite

TABLE II: Examples of solvers diverging (×) and converging
(✓) for coefficient matrices from SuiteSparse collection [15].

BiCG
ID Dataset DIM Sparsity% JB CG STAB Acamar
2C 2cubes sphere 101K 0.016 × ✓ ✓ ✓
Of offshore 259K 0.0063 × ✓ ✓ ✓
Wi windtunnel evap3d 40K 0.1426 ✓ × ✓ ✓
If ifiss mat 96K 0.0388 × × ✓ ✓

Wa wang3 177K 8.3×10−5 ✓ ✓ ✓ ✓
Fe fe rotor 99K 5.6×10−6 ✓ × × ✓
Eb epb3 84K 0.0065 ✓ × ✓ ✓
Qa qa8fm 66K 0.038 × ✓ ✓ ✓
Th thermomech TC 711K 0.0068 × ✓ ✓ ✓
Bc bcircuit 375K 4.8 ×10−5 × ✓ × ✓
Sd sd2010 88K 5.2×10−5 ✓ × × ✓
Li light in tissue 29K 0.0474 ✓ ✓ ✓ ✓
Po poisson3Db 85K 0.032 ✓ ✓ ✓ ✓
Cr crystm03 583K 0.0957 × ✓ ✓ ✓
At atmosmodm 1.4M 0.0005 ✓ ✓ ✓ ✓
Mo mono 500Hz 169K 0.0175 ✓ ✓ ✓ ✓
Ct cti 16K 1.8×10−4 ✓ × × ✓
Ns ns3Da 1.67M 7.2×10−7 × × ✓ ✓
Fi finan512 74K 0.0107 ✓ ✓ ✓ ✓
G2 G2 circuit 150K 2.8×10−5 ✓ ✓ ✓ ✓
Ga GaAsH6 3.3M 5.3×10−8 × ✓ ✓ ✓
Si Si343H6 5.1M 0.016 × ✓ ✓ ✓
To torso2 1M 1.1×10−5 ✓ ✓ ✓ ✓
Ci cit-HepPh 27K 1.9×10−5 ✓ × × ✓
Tf Trefethen 20000 20K 0.0014 × ✓ ✓ ✓

in scientific computing, such as large coefficient matrices,
random sparsity patterns, and non-uniform numerical patterns.
However, the fact that covering such a diverse range of scien-
tific computing problems do indeed rely on various solutions,
challenges the optimizations for efficiency.

Additionally, while these solvers are accurate, their appli-
cability and performance vary based on the structural prop-
erties of the sparse coefficient matrix A. Such variations
make today’s scientific hardware accelerators less effective
and efficient, highlighting the need for a dynamically recon-
figurable accelerator that can adapt to diverse requirements
of various inputs without sacrificing efficiency. To clarify
these key points, this section first briefly reviews the recent
advancements in hardware specialization solutions for solving
Ax = b, their limitations, and then delves deeply into the
specific challenges targeted by this paper.

A. Hardware Specialization & Their Limitations

Several specialized hardware accelerators have been pro-
posed to optimize the solution of Ax = b problems. For
instance, in [19], the system of linear equations has been
solved using BiCG-STAB solver on memristive accelerators.
However, this work focuses on near-memory computations
and termination of higher bits of floating-point computations.

Alrescha [8] proposes a hardware-software co-design approach
to accelerate the sparse computations in the HPCG benchmark
by mitigating the data dependencies but it focuses on CG
solvers only. FDMAX [45] is a recent accelerator that proposes
reconfigurable grid sizes while solving the PDEs using Jaco-
bi/Hybrid iterative solver. However, FDMAX fails to discuss
the matrix form of Jacobi iterative method and applicablity of
their proposed system on other solvers. [53] and [12] propose
analog-based micro-architectural optimizations to reduce the
data movement. However, their design is static, limited to a
single solver and do no offer any sort of reconfiguration.

As summarized above, the state-of-the-art accelerators rely
on pre-computational optimizations to efficiently execute the
solvers. They, however, do not use the runtime performance
information of solvers to tune the available hardware and they
are also limited by the fixed choice of iterative solvers due
to their static design. In other words, these accelerators work
based on two assumptions; first, their choice of iterative solver
is suitable for all types of coefficient matrices, which is not a
realistic assumption; and second, the SpMV implementation
will result in the most efficient performance for a given
dataset, which is also not always correct as variable sparsity
in the co-efficient matrix results in resource inefficiency. The
following section and Table I provide more details on why
these assumptions might not always be accurate.

B. Targeted Challenges

Solution Divergence. The applicability of iterative solvers
varies depending on the characteristics of the coefficient
matrices. The solvers may fail to achieve optimal performance
or even diverge, limiting the applicability of a given solver on
different datasets. In other words, a solver may perform well
for symmetric and diagonally dominant coefficient matrices,
but exhibit poor performance when applied to a negative semi-
definite coefficient matrix. In addition to their performance, a
solver only guarantee convergence if its required properties
are met. For instance, solvers specifically designed to handle
non-symmetric or ill-conditioned matrices may diverge for
matrices with properties otherwise. As a result, the choice
of iterative solvers for particular coefficient matrices depends
on the structural properties of the coefficient matrix. The
associated conditions with our selected solvers are as follows:

• JB: The coefficient matrix must be strictly diagonally
dominant, that is, for all rows, the absolute sum of off-

4

40

50

60

70

80

90

100

Li Po At Mo Fi G2 Tr To W
a
ME
AN

%
 L

at
en

cy
 o

f S
pM

V

SuiteSparse Dataset

Conjugate Gradient

75

80

85

90

95

100

Li Po At Mo Fi G2 Tr To W
a
ME
AN

%
 L

at
en

cy
 o

f S
pM

V

SuiteSparse Dataset

Jacobi Iteration Method

40

50

60

70

80

90

100

Li Po At Mo Fi G2 Tr To W
a
ME
AN

%
 L

at
en

cy
 o

f S
pM

V

SuiteSparse Dataset

Bi-Conjugate Gradient

Fig. 1: Latency of SpMV for different SuiteSparse datasets– In the FPGA implementation of CG, JB, and BiCG-STAB
solvers, SpMV consumes most of the time, making it the most expensive kernel.

diagonal values must be less than the absolute diagonal
value.

∀i,
∑
j ̸=i

|Aij | < |Aii| (1)

where Aij represents the values in the ith row and jth

column of coefficient matrix A.
• CG: The coefficient matrix must be symmetric and

positive definite.

AT = A symmetric (2)

∀ eigenvalue(A) = λ > 0 positive definite (3)

• BiCG-STAB: This is suitable for non-symmetric coeffi-
cient matrices, that is,

AT ̸= A non-symmetric (4)

Apart from these solvers, Table I outlines the required
structural properties of the coefficient matrix A for some
other iterative methods. We have verified these conditions
across our dataset collection from the SuiteSparse matrices
and summarized the convergence results for our selected three
solvers in Table II. This table shows that no single solver can
guarantee convergence across all datasets because of the struc-
tural properties of the coefficient matrix A. As a result, static
DSAs for a particular solver can only be a practical solution for
a limited set of workloads. Moreover, adding various DSAs to
a system to accelerate a wide range of problems is neither
an efficient nor a scalable solution. Therefore, as the last
column of Table II highlights, our solution, Acamar (details
in Section IV), not only guarantees convergence through the
capability of executing different solvers but also achieves
efficiency by leveraging reconfigurable computing. Acamar
reconfigures hardware resources to adapt to the most suitable
solver for a given input.

Resource Underutilization. Even if an ideal reconfigurable
system can be smoothly reconfigured to specifically implement
the computational requirements of different solvers, it still
cannot achieve the best resource utilization, because of the
sparsity, which manifests in SpMV shown in blue in Algo-
rithms 1, 2, and 3. The source of resource underutilization
(R.U) in SpMV is the uneven distribution of the number of
non-zero (NNZ) values among the rows of a sparse matrix as
governed by Equation 5. Ideally, for each row, the number of

0
10
20
30
40
50
60
70
80
90

2C Of Po If Mo Fi Cr Qa Th Ga Pr Si Bc Ns
W

a
MEAN

Re
so

ur
ce

 U
nd

er
ut

ili
za

tio
n

%

(lo
w

er
 is

 b
et

te
r)

SuiteSparse Dataset

Unroll Factor = 2
Unroll Factor = 4
Unroll Factor = 8
Unroll Factor = 12

Fig. 2: Resource Underutilization in baseline SpMV for
SuiteSparse datasets – The resource utilization changes with
unroll factor. The sparse structure of matrix A does not allow
for one fixed unroll factor that will result in most optimal
resource utilization in all datasets.

resources allocated or unroll factor (architectural details about
unroll factor in Section IV-B) should be related to the number
of non-zeros per row (NNZ/row) given by Equation 6:

R.U =

0
if mod(NNZ/row, unroll factor) == 0;

unroll factor−mod(NNZ/row, unroll factor)
unroll factor

otherwise;
(5)

unroll factor | mod (NNZ/row, unroll factor) = 0 (6)

As shown in Figure 2, an FPGA implementation of the
SpMV operation on a set of matrices from the SuiteSparse
collection can lead to suboptimal resource utilization, which
varies based on the resources allocated. Although a glance at
the algorithms may indicate that the majority of operations
involve dense vector computations (i.e. codes not marked
in blue), a significant portion of computational time is still
dedicated to SpMV operations, as illustrated in Figure 1.

Therefore, the inherent sparsity in SpMV operations makes
these dominant computations cost ineffective in terms of
resource utilization. This not only underscores the need to
enhance the resource efficiency of SpMV computations within
the solver but, more importantly, emphasizes that R.U must be
co-optimized with execution time to achieve optimal perfor-

5

Initialize

Matrix Structure

Dominance
Symmetry

Fine-Grained Reconfiguration

Row Length
Trace

MSID
Chain

tBuffer

Dynamic SpMV Kernel

MAC.
1

MAC.
2

MAC.
3

MAC.
Unroll_facto

r

Reconfigurable Solver Solver
Modifier

Static Dense Kernels

Scalar-vector
Vector-vector

Vector Arithmetic

Convergence
Check

+-

**

CSR (A)

CSR (A)

CSR (A.offsets)

CSR (A)

Necessary
input vector

Optimized
reconfiguration

Host Side

pr
B
uf
fe
r

Requests new
bitstream file for
SpMV kernel

Sends the
bitstream of
SpMV kernel
for a set

Sends the
bitstream
of a solver

Requests the
bitstream of a
solver

Output(𝒙)

Receives
Output(𝒙)

Sends i/p
CSR (A)

Memory

Dynamically
Reconfigurable

Statically
Programmed

Legend:

MUX

Solver Decision

Resource Decision

Fig. 3: Architecture of Acamar– It consists of static (in pink) and dynamic units (in cyan), wherein static units decides the
reconfiguration events and signals the host to dynamically reconfigure the FPGA fabric.

mance, which is one of the two main goals of Acamar with
details in the following section.

IV. ACAMAR

A. Key Insight & Overview of the Solution

The reason for the challenges mentioned above is the static
design that was prevalent in previous DSAs that do not
monitor the runtime performance and reconfigure themselves
at runtime. To fill this research gap, we propose Acamar,
a dynamically reconfigurable accelerator that has the ability
to reconfigure itself and adapt to the changes that not only
promise convergence for different sparse matrix structural
scenarios but also tune the amount of allocated hardware re-
sources to the underutilized sparse computational unit, SpMV.
In other words, the key insight of Acamar is to enable a
flexible accelerator that is dynamically reconfigured to match
the computations required by the solver suitable for a given
coefficient matrix offering a robust convergence for diverse
datasets. Additionally, Acamar features fine-grained tuning of
the SpMV unit based on the pattern of coefficient matrix
sparsity. To incur a minimum reconfiguration cost, Acamar
also introduces a cost effective multi-stage iterative decision
(MSID) chain to minimize the reconfiguration rate.

Figure 3 shows the high level overview of Acamar. As the
coefficient matrix A is highly sparse, it is compressed in the
Compressed Sparse Row (CSR) format. The Matrix Struc-
ture unit examines the structural properties, that is, diagonal
dominance and symmetry, of coefficient matrix A and signals
the host side to configure the dynamically reconfigurable
fabric with an appropriate solver based on its findings. The
Initialize unit executes the instructions preceding the start
of the solver loop, as depicted in Algorithm 1, 2, and 3.
The Fine-Grained Reconfiguration unit reads the offsets of

compressed matrix A and makes the reconfiguration decisions
about the Dynamic SpMV kernel in the Reconfigurable Solver
unit. It has a Row Length Trace unit that generates the
average length trace of coefficient matrix rows and stores it
in tBuffer. It communicates this information with the MSID
unit to apply multi-stage iterative decision chain optimization,
aiming to minimize the required number of reconfigurations
of the Dynamic SpMV Kernel. These three units have no
dependencies and run concurrently. The initialized vectors and
optimized reconfiguration rate for SpMV kernel is related
to the Reconfigurable Solver, which starts execution until
convergence or divergence occurs. In case of divergence, the
Solver Modifier unit is triggered and selects the solver with
whom the Reconfigurable Solver unit should be reconfigured.

B. Architecture & Analyzers

Acamar has two fundamental architectural categories based
on how they map on FPGA fabric. (i) Statically Programmed
(ii) Dynamically Reconfigurable. As its name suggests, the
statically programmed components are fixed and programmed
only once by the host side on the FPGA fabric. The dynami-
cally reconfigurable side has the ability to reconfigure itself on
different granularity levels. The decision about the reconfigura-
tion is communicated to the host by the statically programmed
components. One of the main goals of Acamar is to introduce
dynamic reconfigurablity. To achieve this Acamar has to make
decisions regarding when to initiate reconfiguration during
execution and deciding the specific adjustments to be made to
the dynamically reconfigurable fabric. The decisions are made
using two levels of decision loops as shown in Figure 3. The
Solver Decision loop, shown in red, depicts the decision about
reconfiguration of the Reconfigurable Solver unit to one of the
three solvers. The Resource Decision loop in blue represents
the fine-grained reconfiguration of the Dynamic SpMV Kernel

6

Algorithm 4 Multi-Stage Iterative Decision Chain Algorithm

1: rOpt; ▷ Number of MSID-Chain stages
2: tolernce; ▷ Reconfiguration threshold
3: SamplingRate; ▷ Number of sets
4: for t = 1 to rOpt do
5: for i = 0 to j − 1 do
6: tBuffert[i]← tBuffert−1[i]
7: end for
8: for i = j to SamplingRate do
9: diff ← 0

10: diff ←
∣∣∣ tBuffert−1[k]
tBuffert−1[k−1] − 1

∣∣∣
11: if diff ≤ tolerance then
12: tBuffert[k]← tBuffert−1[k − 1]
13: else
14: tBuffert[k]← tBuffert−1[k]
15: end if
16: end for
17: end for

unit. It allocates the optimal number of resources to the
Dynamic SpMV kernel based on the output from the Fine-
Grained Reconfiguration unit.

Matrix Structure Unit. This unit is responsible for decid-
ing the most suitable solver for the given problem. It checks
the structural properties of the coefficient matrix and decides
the solver with which the host side must reconfigure the
Reconfigurable Solver unit. As discussed in Table I, there
are some conditions that a coefficient matrix must satisfy to
converge to a solution. The selection of our solvers, that is,
JB, CG, and BiCG-STAB, is contingent upon the necessary
conditions discussed in Section III-B for their convergence.

The Matrix Structure unit only checks the symmetry and
diagonal dominance properties. The diagonal dominance and
symmetry require trivial logic but the computational cost of
finding eigenvalues is a sophisticated task and has a fair share
of research on its acceleration. Therefore for CG, Acamar only
checks the symmetry property. Our experiments have shown
that this property was enough to ensure that, for the most part,
the solution will converge for CG. As Acamar takes input
in CSR format, verifying symmetry presents a challenge. To
address this, the Matrix Structure unit converts the CSR format
to a Compressed Sparse Column (CSC) format and compares
them. If the CSC format matches the CSR format, the matrix
A is considered symmetric; otherwise, non-symmetric.

Fine-Grained Reconfiguration Unit. This unit is responsi-
ble for deciding the optimal number of allocated resources to
the sparse computation units in the solvers. It enables the fine-
grained tuning of the Dynamic SpMV Kernel unit to ensure
maximum resource utilization. To approximate the optimal
allocation of resources, a dynamically reconfigurable system
is required. In an ideal scenario, the number of allocated
resources should change for each row but that will be a com-
putationally expensive task. The Row Length Trace unit solves
this challenge by finding the optimal required resources for a

tBuffer tBuffer tBuffer tBuffer tBuffer tBuffer

time

Stage0 Stage1 Stage2 Stage3 Stage(rOpt-1) Stage(rOpt)

𝑫
𝑰𝑴

𝑺𝒂
𝒎
𝒑𝒍
𝒊𝒏
𝒈	
𝑹
𝒂𝒕
𝒆

𝑺𝒊
𝒛𝒆
	𝒐
𝒇	
𝒕𝑩
𝒖𝒇
𝒇𝒆
𝒓
=

4
6
2
10
8
9

4 4 4 4 4
4
2
10
10
10

4 4 4 4
4 4 4 4
10
10
10

10 10 10
10
10

10
10

10
10

Assume 𝑟𝑂𝑝𝑡	 = 	𝑆𝑖𝑧𝑒	𝑜𝑓	𝑡𝐵𝑢𝑓𝑓𝑒𝑟, 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	 = 	0.6

Fig. 4: MSID-Chain– tBuffer holds the unroll factors (4, 6,
2, 10, ...) of each set of rows. The yellow circle refers to the
computations shown in Algorithm 4 line no. 10–14.

certain set of rows of A. In our FPGA-based implementation,
the unroll factor serves as a parameter to adjust resource
allocation. The optimal unroll factor is calculated by averaging
the size of each row (i.e. NNZ/row) within each set, given in
Equation 7.

Optimal Unroll Factor =
∑

NNZ/row
Set Size

∀sets ∈ A (7)

Set Size =
#. of Rows in A
Sampling Rate

(8)

where Sampling Rate is the parameter given by the host and
defines the number of sets in coefficient matrix A.

However, this approach can lead to unique unroll factors for
each set of rows, necessitating reconfiguration of the SpMV
unit for each set. This can have a detrimental impact on the
overall system latency. Additionally, the optimal unroll factor
may vary slightly between sets, resulting in only marginal
improvements. To mitigate these challenges and optimize the
reconfiguration rate of the SpMV unit, we propose a multi-
stage iterative decision chain implemented by the MSID Chain
unit. Algorithm 4 shows the algorithm of MSID Chain.

MSID Chain unit calculates the normalized difference be-
tween successive optimal unroll factors of each set of rows. If
the difference falls below a certain tolerance level, the MSID
Chain unit maintains the previous unroll factor; otherwise, it
retains the current one as shown in lines 10-14 of Algorithm 4.
Figure 4 illustrates an example of how the multi-stage iterative
decision chain works. The number of stages (rOpt) is a
parameter and is equal to the size of tBuffer, tolerance is
kept to be 0.6. Initially, the number of times we needed to
reconfigure were five for the shown unroll factors, and post-
optimization they were reduced to only two reconfiguration
events. However, that can alter the resource utilization. Our
experiments have shown that in most of cases, resource
utilization remains nearly constant. (details in Section VII).

Initialize Unit. It starts implementing the required pre-
loop operations of the solver. In the case of CG and BiCG-
STAB, one of these operations is the SpMV kernel, which is

7

implemented as a static unit. As the Initialize unit runs only
once, to avoid the reconfiguration latency, Acamar does not
reconfigure the SpMV unit in the initialize unit and continues
with an unoptimized variant of the SpMV unit.

Reconfigurable Solver Unit. Based on the output of Matrix
Structure, the host will configure the Reconfigurable Solver to
one of the three solvers, that is, either JB, CG, or BiCG-
STAB. These solvers have dense and sparse computations.
For the dense kernels, such as vector-vector multiplication and
scalar-vector multiplication, we are implementing their most
optimized HLS design. The dense kernel units will not be
reconfigured on the runtime, as they are not the main source
of resource underutilization. The SpMV kernel, however, is
a sparse kernel and it must be reconfigured to optimize the
resource utilization. The host will reconfigure the Dynamic
SpMV Kernel unit in the Reconfigurable Solver based on
the optimized configurations obtained from the Fine-Grained
Reconfiguration. The host may or may not reconfigure the
Dynamic SpMV Kernel for each set. The output of the Dy-
namic SpMV kernel will be temporarily stored in the prBuffer
and forwarded to other dense kernels once SpMV finishes.
The Reconfigurable Solver unit runs until either the solution
converges or diverges. If the solution diverges, the Solver unit
interrupts and triggers the Solver Modifier unit. In case of
convergence, it forwards the output vector x to the memory.

Solver Modifier Unit. As mentioned previously, we are
only verifying one out of two convergence conditions for the
CG solver. Consequently, divergence may occur in certain
datasets. To ensure convergence nonetheless, the Solver Modi-
fier unit intervenes by transitioning the solver to an alternative
option from the available choices. The Solver Modifier unit
also triggers the Initialize unit to reset and resend the values to
the Reconfigurable Solver unit. The working mechanism of the
Solver Modifier is straightforward and runs by assigning the
solver whose corresponding bit is low in a temporary register.

V. EXPERIMENTAL SETUP

A. Simulation Infrastructure

We model Acamar based on Xilinx Alveo u55c FPGA
implementation. The hardware has been defined in Xilinx Vitis
HLS and optimized using the HLS pragmas. We implement the
most optimized design of static units for both Acamar as well
as the static baseline. The SpMV unit is optimized dynamically
on runtime using the partial reconfigurablity feature available
in Alveo u55c. To extend our design space exploration, we
use a cycle-level simulator that takes the performance numbers
from the HLS co-simulation and runs exhaustive experiments
while changing different parameters of Acamar.

B. Computing Precision

Scientific computing problems demand high precise calcula-
tions to minimize residual errors, a crucial factor in achieving
accurate results. However, higher precision comes at the cost
of increased computational resources, particularly in floating-
point arithmetic. Typically, scientific computing accelerators
employ either 32-bit or 64-bit floating-point precision for

0

5

10

15

20

25

30

2C Li Of Po W
i At If Mo Fi Cr Eb Qa G2 Ga Pr Si Tr Bc Ns To W

a
Mean

Re
co

nf
ig

ur
at

io
n

St
ag

es

SuiteSparse Dataset

No Optimization rOpt = 2 rOpt = 4 rOpt = 8 rOpt = 12

Fig. 5: Reconfiguration rate for different MSID Chain
stages – It becomes almost constant after rOpt = 8, making
it suitable for the experiments.

calculations [8], [12], [19], [45], [53], [54]. In Acamar, we
use 32-bit numbers for the floating point computations. The
convergence criteria are kept fixed in all the solvers so as to
achieve convergence within a threshold of 10−5. Acamar has
the ability to reconfigure the FPGA fabric with a new solver
in case of divergence. Acamar gives each solver a setup time
before it begins checking for the divergence. The setup time
increases with the problem size. In Acamar the problem size
is fixed to 4096 × 4096 and the setup time is 200 iterations
for each solver.

C. Datasets

For evaluations, we use the SuiteSparse [15] matrix data
collection. Table II shows the datasets we are using for our
evaluation. These matrices exhibit diverse structural properties;
they consist of a combination of strictly diagonally dominant,
symmetric, and non-symmetric matrices, making them suitable
for evaluating our dynamically reconfigurable system. Acamar
processes the matrices in 4096× 4096 chunks.

D. Hardware Configurations

The parameters discussed below affect the performance of
Acamar. We run experiments with a combination of possible
configurations and discuss their effects in Section VII.

rOpt: It defines the number of stages in the multi-stage
iterative decision chain. 0 implies no optimization, 1 implies
a single-stage chain, and so on. The number of stages directly
affects the reconfiguration rate of the Dynamic SpMV Kernel.
More stages imply more iterative decisions and therefore
a reduction in the reconfiguration rate. However, Figure 5
shows that the change in reconfiguration rate becomes almost
constant after rOpt = 8. Hence, for the sake of comparison
with baseline, we are choosing rOpt = 8. Tuning MSID
Chain stages can have implications on resource utilization and
latency. More details are discussed in Section VII-A.

Sampling Rate: It is the number of sets of rows in
coefficient matrix A. It defines the number of rows per set,
that is, Set Size, using the following equation:

Set Size =
#. of Rows in A
Sampling Rate

(9)

A larger sampling rate means a smaller set size and more
fine-tuning of the unroll factor. We have discussed the impli-
cation of using different sampling rates in Section VII-B. We

8

0

1

2

3

4

5

6

7

2C Li Of Po Wi At If Mo Fi Cr Eb Qa Th G2 Ga Pr Si Tr Bc Ns To Wa GMEAN

La
te

cn
y

Sp
ee

du
p

SuiteSparse Dataset

SpMV_URB = 1 SpMV_URB=2
SpMV_URB=4 SpMV_URB=8
SpMV_URB=12 SpMV_URB=16

11
.6

1

Fig. 6: Latency speedup of Acamar over static design for different SuiteSparse datasets– Acamar latency speedup reduces
as the allocated resources to the baseline increases and becomes constant after a while due to insufficient NNZ per row to take
advantage of surplus resources in the baseline. (GMEAN refers to Geometric Mean).

observe that a sampling rate of 32 works well in almost all
the cases. Hence, we choose SamplingRate = 32 to compare
Acamar with the baselines.

tolerance: It tunes the tolerance level of a multi-stage itera-
tive chain. A number greater than 0.5 signifies a more tolerable
system that can result in a smaller reconfiguration rate but
possible wasted resources. For the sake of our experiments,
we have kept it equal to 0.15

SpMV URB: For the baselines, the SpMV unit is static
and must have a fixed number of allocated resources or in
other words, a fixed unroll factor. SpMV URB assigns the
unroll factor of the baseline SpMV unit. The performance of
Acamar against varying SpMV URB have been discussed in
detail in Sections VI-A and VI-B.

E. Baselines

To the best of our knowledge, Acamar is the first FPGA-
based accelerator capable of dynamic partial reconfiguration
for scientific computing problems. For a fair comparison,
we refrained from comparing Acamar to other state-of-the-
art accelerators tailored for scientific problems. Instead, we
compare it to a static design that incorporates the same
optimized static units as Acamar, as well as a static config-
uration of the SpMV unit, while including all optimizations
for a concise evaluation. We run our baseline across all three
iterative solvers and, in cases where convergence is achieved,
we assess the performance for each solver. To analyze the
the effectiveness of fine-grained resource allocation in SpMV
kernel, we implement SpMV in cuSparse library using the
Nvidia open-source code [1] and test it on Nvidia GTX 1650
Super running on Cuda v11.6. We used Nvidia Nsight toolkit
to run GPU evaluation. In the evaluation section, we detail
the resource utilization, latency, achieved throughput, and
performance efficiency of Acamar. Since resource allocation
on FPGAs is controlled by the unroll factor, we use these
terms interchangeably throughout the evaluation section.

VI. EVALUATIONS AND RESULTS

The goal of Acamar is to guarantee convergence for dif-
ferent coefficient matrices while promising optimal resource
utilization. Table II shows that our system offers robust conver-
gence for the cases where a static iterative solver system would

fail. In this section, the main focus is on the performance
evaluation. As discussed in Section III-B, the SpMV kernel
stands out as the most demanding kernel of iterative solvers
(Figure 1). In Acamar, we aim to allocate the optimal number
of resources to the SpMV kernel so that we can minimize
resource underutilization via reconfiguration.

A. Speedup
Figure 6 shows the latency speedup of Acamar against

different resource allocations in the baseline. For the baseline,
we assume the same solver that is being used in Acamar. We
observe a substantial improvement in latency upto 11.61× if
we consider an un-optimized implementation of SpMV w.r.t
latency on the FPGA, that is, the allocated resources (unroll
factor) are equal to 1 (only a single MAC unit). However,
as we increase the number of allocated resources to the
SpMV unit, the improvement starts diminishing with marginal
changes in speedup for SpMV URB > 16. SpMV URB =
1 implies that the baseline is optimized solely for resource
utilization. There will be only 1 MAC unit in the SpMV
kernel and it will run for every non-zero value, resulting in
0% resource underutilization. However, in terms of latency,
this is the worst-case scenario. In this case, there will be
no opportunity for parallelism and the baseline will suffer
from high computational time costs. Acamar, on the other
hand, decides the best unroll factor on the fly with the aid
of Dynamic SpMV kernel and Fine-Grained Reconfiguration
units. It will allocate different numbers of resources for a
given set of rows. This promises a substantial improvement
in latency against sub-optimal baseline w.r.t latency.

For SpMV URB greater than 16, the latency improve-
ments become marginal and almost constant. The reason is
the inability of the baseline SpMV kernel to take advantage of
extra allocated resources. The additional resources are wasted
as there are no more non-zero values in a specific row, leading
to diminishing returns in latency improvement.

It is worth mentioning that for the baseline, we are optimisti-
cally choosing the solver that offers convergence for the given
dataset. Practically, it is quite possible that a solver diverges
for a dataset as shown with some examples in Table II. The
divergence not only leads to false or no solution but also results
in unbounded execution time.

9

0

0.5

1

1.5

2

2.5

3

3.5

4

2C Li Of Po Wi At If Mo Fi Cr Eb Qa G2 Ga Pr Si Bc Ns To Wa GMEAN

Im
pr

ov
em

en
t R

at
io

 R
U

(h

ig
he

r i
s b

et
te

r)

SuiteSparse Dataset

SpMV_URB = 16 SpMV_URB = 20
SpMV_URB = 24 SpMV_URB = 28
SpMV_URB = 32 SpMV_URB = 36

Fig. 7: Improvement ratio in resource underutilization in Acamar for different SuiteSparse datasets (higher is better)–
Resource underutilization improvement becomes significant due to sub-optimal resources allocation in the static design baseline.

0
10
20
30
40
50
60
70
80
90

2C Li Of Po Wi At If Mo Fi Cr Eb Qa G2 Ga Pr Si Bc Ns To Wa GMEAN

Re
so

ur
ce

 U
nd

er
ut

ili
za

tio
n

[%

] (
lo

w
er

 is
 b

et
te

r)

SuiteSparse Matrices

Acamar GTX 1650 Super

Fig. 8: Resource underutilization in Acamar and Nvidia GTX 1650 Super (lower is better)– GPU fails to achieve high
compute units occupancy due to sparse non-zero values, resulting in high underutilization.

B. SpMV Resource Utilization

Resource utilization is related to the sparse computations
happening in the solver, related to the number of MAC units
that are busy in the sparse kernel. As the only sparse kernel
in our choice of solvers is SpMV, as shown in blue in
Algorithm 1, 2, and 3, we discuss improvements in SpMV
kernel resource utilization in this section. The resource un-
derutilization in the baseline is susceptible to increase as the
number of allocated resources increases. This is due to the
insufficient number of non-zeros per row. If the allocated
resources exceed the number of non-zeros in a row, the SpMV
unit suffers from resource underutilization, leading to sub-
optimal performance. Acamar, informed by the number of
non-zeros per set of rows makes a deliberate decision about
the allocated resources. This results in resource utilization
improvement in SpMV of upto 3× as shown in Figure 7.

For most of the cases, the improvement is increasing if we
increase the allocated resources in the baseline. This signifies
the pros of using a dynamic solution to decide the number
of allocated resources. However, when the baseline allocates
a very small number of resources to the SpMV kernel, we
do not observe substantial resource utilization improvement
as Acamar relies on the average of NNZ/row in a given set
of rows to decide the best unroll factor. In these cases, the
baseline assumes the number of resources conservatively to
keep the resource underutilization at the minimum but ends
up paying the cost in terms of computational latency. Acamar
on the other hand, aims to strike a balance between latency
and resource utilization with its fine-grained reconfiguration
solution.

Figure 8 shows the resource underutilization in Nvidia 1650
Super GPU and Acamar. Each SM in GPU house multiple
thread blocks, that act as computing units. However, we

observe that the computing units are not fully utilized. On the
other hand, Acamar resource underutilization is very small
as compared to the GPU, making it a more reliable choice.
On average Acamar is underutilized 50% compared to 81%
underutilized GPU.

C. Achieved Throughput

Effective use of compute resources leads to improved
achieved throughput. Figure 9 shows the percentage of peak
throughput achieved by Acamar and the baselines. On average
Acamar achieves 70% throughput of the peak throughput
and can go up to 83%. In the top graph, Acamar informed
by dynamic decision about the unroll factor achieves better
compute throughput as compared to the fixed unroll factor
baseline. However, in some cases, for instance in Pr and Cr
workloads, Acamar does not always yield better throughput
consumption. This is because of the highly random nature of
the sparse matrices, making our MSID-chain render slightly
sub-optimal unroll factors. In the bottom graph, Acamar is
compared with 1650 Super GPU. GPU achieves very low of
the peak throughput because it has a large number of compute
units but only few of them are utilized in the SpMV operation.

D. Performance Efficiency

We define performance efficiency as the number of floating
point operations (FLOPS) per square millimeter area of FPGA
fabric. Performance efficiency helps us to analyze the pros
of utilizing the resources effectively. Greater performance
efficiency means increased number of FLOPS achieved along-
side a smaller area. The dynamic architecture of Acamar
allows the FPGA to harness more arithmetic operations while
sparing more resources (area) to execute another application
or kernel that is sharing the same FPGA fabric. Figure 10
shows the FLOPS per square millimeter area of Acamar vs.

10

0
10
20
30
40
50
60
70
80
90

2C Li Of Po Wi At If Mo Fi Cr Eb Qa G2 Ga Pr Si Bc Ns To Wa Mean

Ac
he

iv
ed

 C
om

pu
te

 T
hr

ou
gh

pu
t

[%
] (

Hi
gh

er
 is

 b
et

te
r)

SuiteSparse Dataset

Acamar SpMV_URB=24 SpMV_URB=28 SpMV_URB=32 SpMV_URB=36

0
10
20
30
40
50
60
70
80
90

2C Li Of Po Wi At If Mo Fi Cr Eb Qa G2 Ga Pr Si Bc Ns To Wa Mean
SuiteSparse Dataset

Acamar GTX 1650 Super

Ac
hi

ev
ed

 C
om

pu
te

 T
hr

ou
gh

pu
t

[%
] (

Hi
gh

er
 is

 b
et

te
r)

Fig. 9: Achieved compute throughput as a percentage of peak throughput (higher is better)– Top. Acamar vs. Static
design. Bottom. Acamar vs. Nvidia GTX 1650 Super.

fixed unroll factor baselines. On average Acamar achieves 720
GLOPS/mm2 performance efficiency. For some cases in Ga,
Pr, Si workloads, it is less than the baseline owing to the same
reason mentioned in Section VI-C. Increased performance
efficiency means more area saving in Acamar. On average
Acamar is 2× more area efficient than a static design. This
gives more area for the deployment and production of a co-
running application on the same FPGA. It is worth mentioning
that the performance efficiency and area saving evaluation is
done only with a static SpMV design while excluding GPUs
because the partial reconfiguration is a concept limited to
FPGAs only and the comparison with GPU would not have
been sound and fair.

VII. DESIGN SPACE EXPLORATION

In this section, we evaluate the effects of changing the
parameters of Acamar. The two parameters being discussed
in this section are MSID Chain stages and Sampling Rate.

A. Effect of MSID Chain Stages

The main objective of the MSID Chain unit is to minimize
the number of times the Dynamic SpMV Kernel unit is
reconfigured. As shown in Figure 5, the MSID Chain suc-
cessfully reduces the reconfiguration rate. However, this can
have potential repercussions on the performance of Acamar.
There are two situations that can happen;

• First, assume there are 8 non-zeros in a row and the
optimal number of initial unroll factors for its set of rows
is 4. According to Equation 5 that means 0% resource
underutilization but if the MSID chain changes it to 10,
this signifies a 20% loss, that is,

10− 8

10
× 100 = 20% resource underutilization (10)

But the advantage is the increase in available parallelism
and consequently, latency improvement.

• The second case is when the resource utilization im-
proves. For example, there are 6 non-zero values in a row

0

200

400

600

800

1000

1200

2C Li O
f

Po W
i

At If
M
o Fi C
r

Eb Q
a

G
2

G
a Pr Si Bc N
s To W
a

M
ea

n

SuiteSparse Dataset

Acamar SpMV_URB=20
SpMV_URB=24 SpMV_URB=28
SpMV_URB=32 SpMV_URB=36

FL
O

PS
/A

re
a

[𝑮
𝑭𝑳
𝑶
𝑷
𝑺/
𝒎
𝒎
𝟐]

(h
ig

he
r i

s
be

tt
er

) 15
36

Fig. 10: Performance Efficiency of Acamar and static
baseline design (higher is better)– Acamar gives higher
throughput per unit area, leaving more area of the FPGA fabric
to be configured for another application.

of a set and the initial unroll factor is 7, signifying 14%
resource underutilization. Now, the MSID Chain changes
the unroll factor to 3. According to Equation 5, this will
improve the resource underutilization from 14% to

mod(6, 3)× 100 = 0% resource underutilization (11)

This improvement is at the expense of lost parallelism
and Acamar incurs more latency.

In an ideal scenario, we want the MSID Chain to not
significantly affect the performance of a solver. Therefore, the
only notable advantage of MSID Chain will be reflected in
the reduced reconfiguration time and not in the SpMV kernel
itself. Figure 11 shows the change in resource underutilization
and latency of the Dynamic SpMV Kernel unit as the number
of stages (i.e. rOpt) changes. For almost all the cases, we
observe the same results (Li, Wi, Fi, C etc) with very small
changes in some cases (Pr, Ns, 2C). These changes could be
due to one of the above-mentioned cases and may go in our
favour or against us. Such a uniform behavior is good for
Acamar as it ensures that the system does not lean towards
either latency or resource utilization and maintains a balance
between both of the metrics.

11

0.9
0.92
0.94
0.96
0.98

1
1.02
1.04
1.06
1.08

2C Li Of Po Wi At If Mo Fi Cr Eb Qa G2 Ga Pr Si Bc Ns To Wa GMEAN

Sp
M

V
La

te
nc

y
Ra

tio

SuiteSparse Dataset

No Optimization rOpt = 2 rOpt = 4 rOpt = 8 rOpt = 12

10
20
30
40
50
60
70
80

2C Li Of Po Wi At If Mo Fi Cr Eb Qa G2 Ga Pr Si Bc Ns To Wa Mean
SuiteSparse Dataset

No Optimization rOpt = 2 rOpt = 4 rOpt = 8 rOpt = 12
%

 R
es

ou
rc

e
U

nd
er

ut
ili

za
tio

n
(lo

w
er

 is
 b

et
te

r)

Fig. 11: Resource underutilization and change in SpMV latency for different MSID Chain stages – Both the resource
underutilization and SpMV latency remains almost constant post optimization, making them naive to rOpt changes.

B. Effect of Sampling Rate

Sampling Rate defines the maximum number of times
Dynamic SpMV Kernel is reconfigured. It is inversely related
to the set size according to the Equation 9. It changes the
granularity levels of reconfiguration and directly affects the
performance of the system. A bigger sampling rate signifies
a small set size, allowing for better analysis of the rows in
one set. This can result in resource utilization improvement.
However, it can result in more reconfiguration instances,
making it expensive in terms of latency. For instance, if the
problem size is 4096×4096 and the sampling rate is 4096, that
means the host will reconfigure the Dynamic SpMV Kernel
4096 times (at max) resulting in the reconfigured SpMV kernel
that will guarantee 100% resource utilization. However, this is
not practical as the time spent in reconfiguration will increase
and impact the overall execution of the system adversely.
Figure 12 shows the effect of changing sampling rate on
resource underutilization after the MSID Chain optimization.
We can observe that with the increasing sampling rate the
resource underutilization is decreasing. To strike a fair balance
between reconfiguration latency and resource underutilization,
we fix sampling rate to 32 in our experiments.

VIII. DISCUSSIONS

A. Reconfiguration Time

Modern FPGAs feature dynamic partial reconfiguration to
allow a part of the design to modify itself while the rest
of the design is running. This makes a system more robust
to different exceptions and situations that can occur on the
runtime. It also allows the designer to use the same FPGA
fabric for diverse applications. AMD Xilinx uses Dynamic
Function eXchange (DFX) to refer to dynamic partial reconfig-
uration. In this work, we work with Xilinx Alveo u55c which
is equipped with Virtex UltraScale+ FPGA. Xilinx Ultrascale+
family allows reconfiguration for all of the FPGA resources
including clocking networks, gigabit transceivers, I/O ports,
as well as basic computing resources, that is, lookup tables,

flip flops, and digital signal processors. It also allows Nested
DFX to reconfigure a module within a reconfigurable module.
Acamar uses Nested DFX that allows the reconfiguration of
the Dynamic SpMV Kernel unit within the Reconfigurable
Solver unit. An important consideration in dynamically re-
configured designs is the time spent in reconfiguration which
depends on the interface used for partial bitstream loading and
transfer, which in our targeted platform is Xilinx Hardware
internal configuration access port (ICAP) core that allows
bitstream transfer and reconfiguration. It runs at a frequency
of 200MHz and offers a reconfiguration speed of 6.4Gb/s.
The reconfiguration time is directly related to the bitstream
size. To ensure that Acamar incurs the same or less latency as
the baseline, it is crucial to keep the reconfiguration latency
within specific bounds. Figure 13 shows the bounds within
which the reconfiguration must be done. It is worth mentioning
that the main goal of Acamar was to offer robust convergence
and improve resource utilization. The latency considerations,
while significant, are a secondary outcome of our work and
its relevance may vary depending on the specific use case.

B. An Overview of Broader Related Studies

In addition to the DSAs previously discussed, which are
more related to our work, this section presents a comprehen-
sive overview of past efforts in this field to clarify Acamar’s
position within the broader context.

DSAs for Scientific Computing & SpMV. The enhancement
of scientific computation initially emphasized GPU-based ac-
celeration of PDE solvers [9], [51], [55]. Following the rise
of DSAs in AI and neural networks, their potential benefits
for scientific computing were recognized. Since 2016, various
DSAs such as analog computing, hybrid solutions for non-
linear PDEs, cellular nonlinear networks, memristive systems,
and processing-in-memory technologies have been developed
to tackle complex scientific computations [11], [12], [19],
[25], [31], [36], [44], [53], [60], [73]. FPGAs have also been
employed to expedite algorithms like 2D and 3D FDTD, en-
hancing memory hierarchy optimization [13], [17], [35], [79].

12

0
10
20
30
40
50
60
70
80
90

2C Li Of Po Wi At If Mo Fi Cr Eb Qa G2 Ga Pr Si Tr Bc Ns To Wa Mean
SuiteSparse Dataset

Sampling Rate = 32 Sampling Rate = 128 Sampling Rate = 512
Sampling Rate = 1024 Sampling Rate = 2048 Sampling Rate = 4096

%
 R

es
ou

rc
e

U
nd

er
ut

ili
za

tio
n

(lo
w

er
 is

 b
et

te
r)

Fig. 12: Resource underutilization for different sampling rates – Increasing the sampling rate results in finer granularity
of reconfiguration, improving resource utilization but at the expense of increased reconfiguration latency.

-0.2

0.8

0.6

0.4

0.2

0

1

2C Of Po W
i At

Mo Fi Cr Eb Qa Th G2 Ga Pr Si Tr Ns To Wa
Mean

Al
lo

w
ed

Re
co

nf
ig

ur
at

io
n

Ti
m

e
(s

ec
on

ds
)

SuiteSparse Dataset

SPMV_URB = 1 SPMV_URB = 2
SPMV_URB = 4 SPMV_URB = 8

2.0099

2.0865

4.6069

1.
24

12

4.4844 2.8433 1.39532.1539

9.
32

04

6.
08

46

Fig. 13: Allowed reconfiguration time – The reconfiguration
must be done within these bounds to ensure latency equal to
or less than the baseline.

Beyond solving PDEs, DSAs have facilitated improvements
in matrix inversion processes, such as the LU decomposition
method on systolic arrays and blocked approaches on chips for
enhanced parallelism [4], [6], [29], [34], [41], [81]. In addition
to such scientific-computing-specific DSAs, several hardware
accelerators have been proposed to improve the performance
of SpMV that can be used for accelerating scientific computing
as well but they are static designs, too [5], [21], [37], [46],
[48], [56], [58], [67], [68], [72].

Reconfigurable DSAs and Hardware Search. Reconfig-
urable accelerators, embracing a wide spectrum of domains,
employ techniques such as data-centric parallel computing
and dataflow architectures [28], [61], [70], [75], [84], [85].
They utilize dynamic partial reconfigurability in FPGAs to
adapt DNN accelerators flexibly [33]. Enhancing DSA flex-
ibility involves techniques ranging from mapping problems
to hardware, using ML for resource assignment, to flexible
interconnection networks [10], [38]–[40], [47], [57], [69],
[70], [87], [88]. Machine learning, especially reinforcement
learning, has been instrumental in resource management for
DNNs and in improving specific tasks such as prefetching [10],
[39]. Innovations also include scalable reconfigurable acceler-
ators and architectural explorations for efficient network-on-
chip [38], [47], [57], [88]. Recent efforts aim to co-explore
neural architectures and ASIC for multiple tasks, evaluating
various dataflows and acceleration features for efficiency in
speed and energy consumption [76], [80], [82].

Software-based Optimizations for Scientific Computing.
The common theme of recent software-based sparse accel-
erators for scientific computing revolves around memory-
related GPU optimizations. For instance, CUDA-based GPU
parallelization optimizes 3D finite difference computations
by leveraging data parallelism and efficient memory access

patterns, achieving high throughput and scalability across
multiple GPUs [52]. [23] employs specialized algorithms and
advanced memory management strategies in GPU implemen-
tations of PDE models. [49] advocates for the use of domain-
specific languages like UFL to tailor FEM implementations for
GPUs and multicore CPUs, optimizing algorithms and data
structures. [22] develops efficient GPU-based algorithms for
the entire FEM pipeline, including optimized local element
information generation and parallel linear system solving with
algebraic multigrid preconditioning. [32] optimizes mem-
ory arrangement for GPU-accelerated finite element simula-
tions, emphasizing efficient data mapping and memory access
strategies. [50] proposes a matrix-free GPU implementation
of FGFEA, exploiting grid regularity and on-chip memory
utilization to minimize memory transactions and maximize
parallel computational throughput. [18] introduces a GPU-
based approach for efficient sparse linear systems generation in
electromagnetics, utilizing parallel matrix assembly to exploit
GPU computational power. [43] evaluates scalable FEM algo-
rithms on multi-core CPUs and GPUs, focusing on optimized
mesh partitioning and memory access patterns to minimize
data conflicts. These papers showcase a range of software-
based meomry optimizations tailored to enhance across various
scientific computing applications.

IX. CONCLUSIONS

This paper proposed Acamar, an innovative FPGA-based
dynamically reconfigurable accelerator for diverse scientific
computing workloads. Through dynamic reconfiguration, Aca-
mar transcends the constraints of static design and lack of
generality, providing tailored solutions for varying structures
of coefficient matrices. The capacity to seamlessly transition
between solvers including JB, CG, and BiCG-STAB, coupled
with the reconfigurability of the SpMV unit, ensures robust
convergence and optimized performance. Acamar’s MSID
chain further enhances the efficiency by minimizing recon-
figuration overhead. This unique approach not only optimizes
resource utilization but also paves the way for a new era of
DSAs that adapt in real-time to the demands of scientific
problems, marking a significant leap forward from the inef-
ficiencies observed in current supercomputing practices.

ACKNOWLEDGMENT

We gratefully acknowledge the support of US Department of
Energy (DoE) under the ASCR ECRP, Award DE-SC0024079.

13

REFERENCES

[1] “Nvidia cusparse library samples,” [Accessed: June-24th-2024].
[Online]. Available: https://github.com/NVIDIA/CUDALibrarySamples/
tree/master/cuSPARSE/spmv csr

[2] A. Ahmad and M. A. Pasha, “Ffconv: An fpga-based accelerator for fast
convolution layers in convolutional neural networks,” 2020.

[3] A. Ahmad, M. A. Pasha, and G. J. Raza, “Accelerating tiny yolov3 using
fpga-based hardware/software co-design,” in 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), 2020.

[4] J. Arias-Garcı́a, R. P. Jacobi, C. H. Llanos, and M. Ayala-Rincón,
“A suitable fpga implementation of floating-point matrix inversion
based on gauss-jordan elimination,” in 2011 vii southern conference on
programmable logic (SPL). IEEE, 2011, pp. 263–268.

[5] B. Asgari, R. Hadidi, J. Dierberger, C. Steinichen, A. Marfatia, and
H. Kim, “Copernicus: Characterizing the performance implications of
compression formats used in sparse workloads,” in IISWC. IEEE,
2021, pp. 1–12.

[6] B. Asgari, R. Hadidi, N. S. Ghaleshahi, and H. Kim, “Pisces: Power-
aware implementation of slam by customizing efficient sparse algebra,”
in DAC. ACM, 2020, p. 233.

[7] B. Asgari, R. Hadidi, H. Kim, and S. Yalamanchili, “Eridanus: Effi-
ciently running inference of dnns using systolic arrays,” IEEE Micro,
2019.

[8] B. Asgari, R. Hadidi, T. Krishna, H. Kim, and S. Yalamanchili, “Al-
rescha: A lightweight reconfigurable sparse-computation accelerator,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 249–260.

[9] A. Balevic, L. Rockstroh, A. Tausendfreund, S. Patzelt, G. Goch, and
S. Simon, “Accelerating simulations of light scattering based on finite-
difference time-domain method with general purpose gpus,” in 2008
11th IEEE International Conference on Computational Science and
Engineering. IEEE, 2008, pp. 327–334.

[10] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Subramoney,
and O. Mutlu, “Pythia: A customizable hardware prefetching frame-
work using online reinforcement learning,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
1121–1137.

[11] T. Chen, J. Botimer, T. Chou, and Z. Zhang, “An sram-based acceler-
ator for solving partial differential equations,” in 2019 IEEE Custom
Integrated Circuits Conference (CICC). IEEE, 2019, pp. 1–4.

[12] T. Chen, J. Botimer, T. Chou, and Z. Zhang, “A 1.87-mm 2 56.9-gops
accelerator for solving partial differential equations,” IEEE Journal of
Solid-State Circuits, vol. 55, no. 6, pp. 1709–1718, 2020.

[13] W. Chen, P. Kosmas, M. Leeser, and C. Rappaport, “An fpga imple-
mentation of the two-dimensional finite-difference time-domain (fdtd)
algorithm,” in Proceedings of the 2004 ACM/SIGDA 12th international
symposium on Field programmable gate arrays, 2004, pp. 213–222.

[14] E. Chow and Y. Saad, “Approximate inverse preconditioners via sparse-
sparse iterations,” SIAM Journal on Scientific Computing, vol. 19, no. 3,
pp. 995–1023, 1998.

[15] T. A. Davis and Y. Hu, “The university of florida sparse matrix collec-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, p. 1, 2011.

[16] J. Douglas and J. P. Wang, “An absolutely stabilized finite element
method for the stokes problem,” Mathematics of computation, vol. 52,
no. 186, pp. 495–508, 1989.

[17] J. P. Durbano and F. E. Ortiz, “Fpga-based acceleration of the 3d finite-
difference time-domain method,” in 12th Annual IEEE symposium on
field-programmable custom computing machines. IEEE, 2004, pp. 156–
163.

[18] A. Dziekonski, P. Sypek, A. Lamecki, and M. Mrozowski, “Finite
element matrix generation on a gpu,” Progress In Electromagnetics
Research, vol. 128, pp. 249–265, 2012.

[19] B. Feinberg, U. K. R. Vengalam, N. Whitehair, S. Wang, and E. Ipek,
“Enabling scientific computing on memristive accelerators,” in The
International Symposium on Computer Architecture (ISCA). IEEE,
2018, pp. 367–382.

[20] B. Feng, Y. Wang, G. Chen, W. Zhang, Y. Xie, and Y. Ding, “Egemm-
tc: accelerating scientific computing on tensor cores with extended
precision,” in Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2021.

[21] S. Feng, X. He, K.-Y. Chen, L. Ke, X. Zhang, D. Blaauw, T. Mudge,
and R. Dreslinski, “Menda: a near-memory multi-way merge solution for
sparse transposition and dataflows,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, 2022, pp. 245–258.

[22] Z. Fu, T. J. Lewis, R. M. Kirby, and R. T. Whitaker, “Architecting the
finite element method pipeline for the gpu,” Journal of computational
and applied mathematics, vol. 257, pp. 195–211, 2014.

[23] M. Giles, E. László, I. Reguly, J. Appleyard, and J. Demouth, “Gpu
implementation of finite difference solvers,” in 2014 Seventh Workshop
on High Performance Computational Finance. IEEE, 2014, pp. 1–8.

[24] S. S. Gill, H. Wu, P. Patros, C. Ottaviani, P. Arora, V. C.
Pujol, D. Haunschild, A. K. Parlikad, O. Cetinkaya, H. Lutfiyya,
V. Stankovski, R. Li, Y. Ding, J. Qadir, A. Abraham, S. K.
Ghosh, H. H. Song, R. Sakellariou, O. Rana, J. J. Rodrigues,
S. S. Kanhere, S. Dustdar, S. Uhlig, K. Ramamohanarao, and
R. Buyya, “Modern computing: Vision and challenges,” Telematics and
Informatics Reports, vol. 13, p. 100116, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2772503024000021

[25] N. Guo, Y. Huang, T. Mai, S. Patil, C. Cao, M. Seok, S. Sethumadhavan,
and Y. Tsividis, “Energy-efficient hybrid analog/digital approximate
computation in continuous time,” IEEE Journal of Solid-State Circuits,
vol. 51, no. 7, pp. 1514–1524, 2016.

[26] K. E. Hamilton, C. D. Schuman, S. R. Young, R. S. Bennink,
N. Imam, and T. S. Humble, “Accelerating scientific computing in the
post-moore’s era,” ACM Trans. Parallel Comput., vol. 7, no. 1, 2020.
[Online]. Available: https://doi.org/10.1145/3380940

[27] M. A. Heroux, J. Dongarra, and P. Luszczek, “Hpcg benchmark tech-
nical specification,” Sandia National Lab.(SNL-NM), Albuquerque, NM
(United States), Tech. Rep., 2013.

[28] R. Hojabr, A. Sedaghati, A. Sharifian, A. Khonsari, and A. Shriraman,
“Spaghetti: Streaming accelerators for highly sparse gemm on fpgas,”
in 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2021, pp. 84–96.

[29] B. Holanda, R. Pimentel, J. Barbosa, R. Camarotti, A. Silva-Filho,
L. Joao, V. Souza, J. Ferraz, and M. Lima, “An fpga-based accelerator
to speed-up matrix multiplication of floating point operations,” in 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum. IEEE, 2011, pp. 306–309.

[30] V. G. Honavar, M. D. Hill, and K. Yelick, “Accelerating science:
A computing research agenda,” 2016. [Online]. Available: https:
//arxiv.org/abs/1604.02006

[31] Y. Huang, N. Guo, M. Seok, Y. Tsividis, K. Mandli, and S. Sethumad-
havan, “Hybrid analog-digital solution of nonlinear partial differential
equations,” in MICRO. IEEE, 2017, pp. 665–678.

[32] P. Huthwaite, “Accelerated finite element elastodynamic simulations
using the gpu,” Journal of Computational Physics, vol. 257, pp. 687–707,
2014.

[33] H. Irmak, D. Ziener, and N. Alachiotis, “Increasing flexibility of
fpga-based cnn accelerators with dynamic partial reconfiguration,” in
2021 31st International Conference on Field-Programmable Logic and
Applications (FPL). IEEE, 2021, pp. 306–311.

[34] A. Irturk, B. Benson, S. Mirzaei, and R. Kastner, “An fpga design space
exploration tool for matrix inversion architectures,” in 2008 Symposium
on Application Specific Processors. IEEE, 2008, pp. 42–47.

[35] Y. Ishigaki, Y. Tomioka, T. Shibata, and H. Kitazawa, “An fpga imple-
mentation of 3d numerical simulations on a 2d simd array processor,” in
2015 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2015, pp. 938–941.

[36] M. Jacquelin, M. Araya-Polo, and J. Meng, “Scalable distributed high-
order stencil computations,” in 2022 SC22: International Conference for
High Performance Computing, Networking, Storage and Analysis (SC).
IEEE Computer Society, 2022, pp. 411–423.

[37] A. K. Jain, H. Omidian, H. Fraisse, M. Benipal, L. Liu, and D. Gaitonde,
“A domain-specific architecture for accelerating sparse matrix vector
multiplication on fpgas,” in 2020 30th International conference on
field-programmable logic and applications (FPL). IEEE, 2020, pp.
127–132.

[38] Y. Kan, M. Wu, R. Zhang, and Y. Nakashima, “Mugra: A scalable multi-
grained reconfigurable accelerator powered by elastic neural network,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69,
no. 1, pp. 258–271, 2021.

[39] S.-C. Kao, G. Jeong, and T. Krishna, “Confuciux: Autonomous hardware
resource assignment for dnn accelerators using reinforcement learn-

14

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSPARSE/spmv_csr
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSPARSE/spmv_csr
https://www.sciencedirect.com/science/article/pii/S2772503024000021
https://doi.org/10.1145/3380940
https://arxiv.org/abs/1604.02006
https://arxiv.org/abs/1604.02006

ing,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 622–636.

[40] S.-C. Kao and T. Krishana, “Gamma: Automating the hw mapping of
dnn models on accelerators via genetic algorithm,” in 2020 Internation
Conference on Computer Aided Design. ACM, 2020, pp. 1–9.

[41] M. Karkooti, J. R. Cavallaro, and C. Dick, “Fpga implementation of
matrix inversion using qrd-rls algorithm,” in Asilomar Conference on
Signals, Systems, and Computers, 2005.

[42] V. S. K. Kokkiligadda, V. Naikoti, G. S. Patkotwar, S. L. Sabat, and
R. Peesapati, “Fpga-based hardware accelerator for matrix inversion,”
SN Computer Science, vol. 4, no. 2, p. 147, 2023.

[43] S. Kopysov, A. Novikov, N. Nedozhogin, and V. Rychkov, “Scalability
of parallel finite element algorithms on multi-core platforms,” in IOP
Conference Series: Materials Science and Engineering, vol. 158, no. 1.
IOP Publishing, 2016, p. 012055.

[44] J. Kung, Y. Long, D. Kim, and S. Mukhopadhyay, “A pro-
grammable hardware accelerator for simulating dynamical systems,”
ACM SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 403–
415, 2017.

[45] J. Li, Y. Zhang, H. Zheng, and K. Wang, “Fdmax: An elastic accelerator
architecture for solving partial differential equations,” in Proceedings of
the 50th Annual International Symposium on Computer Architecture,
2023, pp. 1–12.

[46] S. Li, D. Liu, and W. Liu, “Optimized data reuse via reordering
for sparse matrix-vector multiplication on fpgas,” in 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE,
2021, pp. 1–9.

[47] T.-R. Lin, D. Penney, M. Pedram, and L. Chen, “A deep reinforcement
learning framework for architectural exploration: A routerless noc case
study,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2020, pp. 99–110.

[48] B. Liu and D. Liu, “Towards high-bandwidth-utilization spmv on fpgas
via partial vector duplication,” in Proceedings of the 28th Asia and South
Pacific Design Automation Conference (ASP-DAC), 2023, pp. 33–38.

[49] G. R. Markall, D. A. Ham, and P. H. Kelly, “Towards generating
optimised finite element solvers for gpus from high-level specifications,”
Procedia Computer Science, vol. 1, no. 1, pp. 1815–1823, 2010.

[50] J. Martı́nez-Frutos and D. Herrero-Pérez, “Efficient matrix-free gpu
implementation of fixed grid finite element analysis,” Finite Elements
in Analysis and Design, vol. 104, pp. 61–71, 2015.

[51] D. Michéa and D. Komatitsch, “Accelerating a three-dimensional
finite-difference wave propagation code using gpu graphics cards,”
Geophysical Journal International, vol. 182, no. 1, pp. 389–402, 2010.

[52] P. Micikevicius, “3d finite difference computation on gpus using cuda,”
in Proceedings of 2nd workshop on general purpose processing on
graphics processing units, 2009, pp. 79–84.

[53] J. Mu and B. Kim, “29.2 a 21× 21 dynamic-precision bit-serial
computing graph accelerator for solving partial differential equations
using finite difference method,” in 2021 IEEE International Solid-State
Circuits Conference (ISSCC), vol. 64. IEEE, 2021, pp. 406–408.

[54] J. Mu, C. Yu, T. T.-H. Kim, and B. Kim, “A scalable bit-serial computing
hardware accelerator for solving 2d/3d partial differential equations
using finite difference method,” in ESSCIRC 2022-IEEE 48th European
Solid State Circuits Conference (ESSCIRC). IEEE, 2022, pp. 353–356.

[55] T. Okimura, T. Sasayama, N. Takahashi, and S. Ikuno, “Parallelization
of finite element analysis of nonlinear magnetic fields using gpu,” IEEE
transactions on magnetics, vol. 49, no. 5, pp. 1557–1560, 2013.

[56] A. Parravicini, F. Sgherzi, and M. D. Santambrogio, “A reduced-
precision streaming spmv architecture for personalized pagerank on
fpga,” in Proceedings of the 26th Asia and South Pacific Design
Automation Conference (ASP-DAC), 2021, pp. 378–383.

[57] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishana, “Sigma: A sparse and irregular gemm
accelerator with flexible interconnects for dnn training,” in 2020 IEEE
Internation Sumposium on High Performance Computer Architecture.
IEEE, 2020, pp. 58–70.

[58] D. Ramchandani, B. Asgari, and H. Kim, “Spica: Exploring fpga opti-
mizations to enable an efficient spmv implementation for computations
at edge,” in 2023 IEEE International Conference on Edge Computing
and Communications (EDGE). IEEE, 2023, pp. 36–42.

[59] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: enabling low-
power, highly-accurate deep neural network accelerators,” 2016.

[60] K. Rocki, D. Van Essendelft, I. Sharapov, R. Schreiber, M. Morrison,
V. Kibardin, A. Portnoy, J. F. Dietiker, M. Syamlal, and M. James,
“Fast stencil-code computation on a wafer-scale processor,” in SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2020, pp. 1–14.

[61] A. Rucker, M. Vilim, T. Zhao, Y. Zhang, R. Prabhakar, and K. Olukotun,
“Capstan: A vector rda for sparsity,” in 2021 Annural IEEE/ACM
International Symposium on Microarchitecture. IEEE/ACM, 2021, pp.
1022–1035.

[62] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,” SIAM Journal on
scientific and statistical computing, vol. 7, no. 3, pp. 856–869, 1986.

[63] Y. Saad, “The lanczos biorthogonalization algorithm and other oblique
projection methods for solving large unsymmetric systems,” SIAM
Journal on Numerical Analysis, vol. 19, no. 3, pp. 485–506, 1982.

[64] Y. Saad, Iterative methods for sparse linear systems. siam, 2003, vol. 82.
[65] Y. Saad, “Filtered conjugate residual-type algorithms with applications,”

SIAM Journal on Matrix Analysis and Applications, vol. 28, no. 3, pp.
845–870, 2006.

[66] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h, “A deflated ver-
sion of the conjugate gradient algorithm,” SIAM Journal on Scientific
Computing, vol. 21, no. 5, pp. 1909–1926, 2000.

[67] F. Sadi, L. Fileggi, and F. Franchetti, “Algorithm and hardware co-
optimized solution for large spmv problems,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 2017,
pp. 1–7.

[68] F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. Pileggi, and F. Franchetti,
“Efficient spmv operation for large and highly sparse matrices us-
ing scalable multi-way merge parallelization,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2019, pp. 347–358.

[69] A. Samajdar, J. M. Joseph, M. Denton, and T. Krishna, “Airchitect:
Learning custom architecture design and mapping space,” arXiv preprint
arXiv:2108.08295, 2021.

[70] A. Samajdar, E. Qin, M. Pellauer, and T. Krishna, “Self adaptive recon-
figurable arrays (sara) learning flexible gemm accelerator configuration
and mapping-space using ml,” in Proceedings of the 59th ACM/IEEE
Design Automation Conference, 2022, pp. 583–588.

[71] Z. Shi, Q. He, and Y. Liu, “Accelerating parallel jacobi method for
matrix eigenvalue computation in doa estimation algorithm,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 6, pp. 6275–6285,
2020.

[72] B. Sigurbergsson, T. Hogervorst, T. D. Qiu, and R. Nane, “Sparsti-
tion: a partitioning scheme for large-scale sparse matrix vector mul-
tiplication on fpga,” in 2019 IEEE 30th International Conference on
Application-specific Systems, Architectures and Processors (ASAP), vol.
2160. IEEE, 2019, pp. 51–58.

[73] G. Singh, D. Diamantopoulos, C. Hagleitner, J. Gómez-Luna, S. Stu-
ijk, O. Mutlu, and H. Corporaal, “Nero: A near high-bandwidth
memory stencil accelerator for weather prediction modeling,” in
2020 30th International Conference on Field-Programmable Logic and
Applications (FPL). IEEE, 2020, pp. 9–17.

[74] G. L. Sleijpen and H. A. Van der Vorst, “A jacobi–davidson iteration
method for linear eigenvalue problems,” SIAM review, vol. 42, no. 2,
pp. 267–293, 2000.

[75] C. Tan, C. Xie, T. Geng, A. Marquez, A. Tumeo, K. Barker, and
A. Li, “Arena: Asynchronous reconfigurable accelerator ring to enable
data-centric parallel computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 12, pp. 2880–2892, 2021.

[76] H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han, “Search-
ing efficient 3d architectures with sparse point-voxel convolution,” in
Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXVIII. Springer, 2020,
pp. 685–702.

[77] Top500. (2023) Top500 hpcg ranking. [Online].
Available: https://www.top500.org/lists/hpcg/2023/11/#:∼:
text=HPCG%20Release&text=This%20score%20is%20meant%20to,
%2DPFlop%2Fs%20and%20No.

[78] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R.
Scott, and N. Wilkins-Diehr, “Xsede: Accelerating scientific discovery,”
Computing in Science Engineering, vol. 16, no. 5, pp. 62–74, 2014.

[79] H. M. Waidyasooriya and M. Hariyama, “Fpga-based deep-pipelined
architecture for fdtd acceleration using opencl,” in 2016 IEEE/ACIS

15

https://www.top500.org/lists/hpcg/2023/11/#:~:text=HPCG%20Release&text=This%20score%20is%20meant%20to,%2DPFlop%2Fs%20and%20No.
https://www.top500.org/lists/hpcg/2023/11/#:~:text=HPCG%20Release&text=This%20score%20is%20meant%20to,%2DPFlop%2Fs%20and%20No.
https://www.top500.org/lists/hpcg/2023/11/#:~:text=HPCG%20Release&text=This%20score%20is%20meant%20to,%2DPFlop%2Fs%20and%20No.

15th International Conference on Computer and Information Science
(ICIS). IEEE, 2016, pp. 1–6.

[80] Y. N. Wu, P.-A. Tsai, A. Parashar, V. Sze, and J. S. Emer, “Sparseloop:
An analytical approach to sparse tensor accelerator modeling,” in
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2022, pp. 1377–1395.

[81] Y. Xu, D. Li, Y. Xi, J. Lan, and T. Jiang, “An improved predictive
controller on the fpga by hardware matrix inversion,” IEEE Transactions
on Industrial Electronics, vol. 65, no. 9, pp. 7395–7405, 2018.

[82] L. Yang, Z. Yan, M. Li, H. Kwon, L. Lai, T. Krishna, V. Chandra,
W. Jiang, and Y. Shi, “Co-exploration of neural architectures and
heterogeneous asic accelerator designs targeting multiple tasks,” in 2020
57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020,
pp. 1–6.

[83] X. I. Yang and R. Mittal, “Acceleration of the jacobi iterative method
by factors exceeding 100 using scheduled relaxation,” Journal of
Computational Physics, vol. 274, pp. 695–708, 2014.

[84] W. You and C. Wu, “A reconfigurable accelerator for sparse convo-
lutional neural networks,” in Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2019,
pp. 119–119.

[85] J. J. Zhang, N. B. Agostini, S. Song, C. Tan, A. Limaye, V. Amatya,
J. Manzano, M. Minutoli, V. G. Castellana, A. Tumeo et al., “Towards
automatic and agile ai/ml accelerator design with end-to-end synthesis,”
in 2021 IEEE 32nd International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE, 2021, pp. 218–
225.

[86] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen,
and Y. Chen, “Cambricon-x: An accelerator for sparse neural net-
works,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016.

[87] Z. Zhao, H. Kwon, S. Kuhar, W. Sheng, Z. Mao, and T. Krishna, “mrna:
Enabling efficient mapping space exploration for a reconfiguration neural
accelerator,” in 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2019, pp. 282–
292.

[88] H. Zheng, K. Wang, and A. Louri, “Adapt-noc: A flexible network-on-
chip design for heterogeneous manycore architectures,” in 2021 IEEE
international symposium on high-performance computer architecture
(HPCA). IEEE, 2021, pp. 723–735.

16

	Introduction
	System of Linear Equations
	Representing Problems in Ax=b
	Solving Ax=b

	Challenges & Motivation
	Hardware Specialization & Their Limitations
	Targeted Challenges

	Acamar
	Key Insight & Overview of the Solution
	Architecture & Analyzers

	Experimental Setup
	Simulation Infrastructure
	Computing Precision
	Datasets
	Hardware Configurations
	Baselines

	Evaluations and Results
	Speedup
	SpMV Resource Utilization
	Achieved Throughput
	Performance Efficiency

	Design Space Exploration
	Effect of MSID Chain Stages
	Effect of Sampling Rate

	Discussions
	Reconfiguration Time
	An Overview of Broader Related Studies

	Conclusions
	References

