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Abstract
High bandwidth memory (HBM) equipped sparse accelerators are
emerging as a new class of accelerators that offer concurrent ac-
cesses to data and parallel execution to mitigate the memory bound
behavior of sparse kernels. However, because of their underlying
non-zero scheduling scheme, state-of-the-art HBM-based sparse ac-
celerators (e.g. Serpens) suffer from high resource underutilization
causing sub-optimal performance, and inefficiency. To solve this
challenge, we propose Chasoň, an HBM-based streaming accelera-
tor for sparse kernels, specifically sparse matrix vector multiplica-
tion. Chasoň supports our novel non-zero scheduling scheme called
Cross-HBM Channel out-of-order (OoO) Scheduling (CrHCS) to
enable data migration across HBM channels and mitigate resource
underutilization. We implement Chasoň on AMD Xilinx Alveo
U55c achieving 301𝑀𝐻𝑧 clock frequency and evaluate it based on
SuiteSparse and SNAP matrix collections. Chasoň improves the re-
source utilization and achieves up to 8×, 20.33×, 11.65×, and 2.67×
performance improvement and 2.03×, 34.72×, 19.48×, and 14.61×
better energy efficiency over Serpens, Nvidia RTX 4090, Nvidia RTX
A6000 and Intel Core i9-11980HK, respectively. The source code for
Chasoň will be available online soon.

Keywords
High Bandwidth Memory, Sparse Algebra, Streaming Accelerator,
Data Migration, PE utilization, FPGA Implementation

1 Introduction
Sparsity has become an important characteristic of data across
various domains. With increasing volume of data in applications
from different domains for example scientific computing [2, 12,
15, 20, 25, 72], machine learning [47, 74, 80], genomics [63], opti-
mization problems [5, 6, 19, 37, 59] and graph problems [8, 30, 43],
the prevalence of sparse data has also increased. . Sparse algebraic
operations are prominent in these applications. Sparse algebra is
a term that encompasses the operations in which at least one of
the operands is sparse. However, processing sparse data introduces
unique challenges. Sparse algebraic kernels suffer from memory-
bound performance due to non-uniform sparsity patterns. Despite
numerous solutions proposed to accelerate sparse algebra, such as
specialized hardware accelerators [5, 11, 19, 24, 49, 57, 66, 70, 79]
and optimized software techniques [33, 52, 60, 64, 73], sparse data
handling remains an active area of research.

One of the primary challenges in implementing sparse algebra is
addressing the memory bottleneck, which arises from irregular data
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access patterns and the limited efficiency of traditional memory
architectures. To tackle this, system architects have proposed novel
advanced memory technologies, such as high-bandwidth mem-
ory (HBM) [29, 31, 34], 3D-stacked DRAM [4, 44], hybrid memory
cube (HMC) [28, 55] and resistive RAM (ReRAM) [27, 78]. Among
these, HBM has emerged as a cornerstone in accelerating memory-
bound sparse algebra operations. An HBM is composed of multiple
independent channels and allows for concurrent read and write
operations. This parallelism results in significantly higher memory
bandwidth compared to conventional DRAM architectures. In addi-
tion to high-performance computing platforms such as GPUs, HBM
has also been integrated into reconfigurable platforms, enabling
the development of domain-specific resource-efficient accelerators.
For example, AMD Xilinx Alveo U280 and U55c data center accel-
erator cards offer peak HBM bandwidth of 273𝐺𝐵/𝑠 and 460𝐺𝐵/𝑠
respectively and can be deployed in reconfigurable systems.

The high bandwidth and concurrent accesses make HBM par-
ticularly well-suited for sparse algebraic operations. Researchers
are actively developing innovative sparse algebra accelerators that
leverage HBM’s capabilities to mitigate memory bottlenecks and
accelerate performance in sparse computation workloads [11, 23,
42, 57, 67, 68, 81]. There exist various approaches to integrate
HBM into an accelerator’s architecture. State-of-the-art accelera-
tors [11, 23, 57, 67, 68] typically utilize HBM in a streaming fashion,
where data is continuously streamed from the HBM to the compute
units. However, this continuous data stream does not always trans-
late into uninterrupted computations. This is because of the RAW
dependencies in sparse algebraic operations. For instance, when an
HBM channel streams a non-zero value from a particular row, the
processing elements (PEs) require a certain number of clock cycles
to complete the multiplication and accumulation (MAC) operation.
During this time, processing the next non-zero value from the same
row must be delayed to avoid memory bank conflicts and RAW
dependencies.

To address this challenge, current solutions [23, 67, 68] have
introduced an out-of-order (OoO) scheduling technique for row-
based parallelization, known as PE-aware non-zero OoO scheduling.
It is built on top of row-based non-zero scheduling. It schedules the
non-zero values from rows that were assigned to an HBM channel
to different PEs in round-robin fashion. Although this approach
demonstrates significant improvements over existing works, it still
leaves a considerable number of stalls in PEs, leading to high PE
underutilization. The reason lies in its dependence on non-zero
values of the rows mapped to the same channel to do the scheduling
and fill the stalls. This intra-channel scheduling constraint restricts
its ability to fully utilize the available PE resources (more details in
Section 2.2).
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In this work, we propose a novel OoO non-zero scheduling called
cross-HBM channel OoO scheduling (CrHCS). CrHCS extends the
intra-channel non-zero scheduling to inter-channel non-zero sched-
uling by allowing cross-HBM channel data migration. The main
goal of CrHCS is to improve the PE utilization by reducing the num-
ber of PE stalls, achieved through the migration of non-zero values
across HBM channels. We also propose our novel architecture Cha-
soň, to support CrHCS for sparse-matrix vector multiplication. The
PEs in Chasoň generate the partial outputs that are associated with
the current channel (private channel) as well as other channels
(shared channels). We implement Chasoň on AMD Xilinx Alveo
U55c using Vitis high-level synthesis (HLS) and TAPA [17] frame-
work.We use RapidstreamAutobridge [18] to implement our design
and generate the bitstream file. We evaluate Chasoň on a variety of
800 matrices from SuiteSparse [7] and SNAP [35] collection against
Serpens [67], Nvidia RTX 4090, Nvidia RTX A6000 (cuSparse) and
Intel Core i9-11980HK (Intel Math Kernel Library). Chasoň achieves
301MHz clock frequency and exhibits up to 8×, 20.33×, 11.65× and
2.67× performance improvement over Serpens [67], Nvidia RTX
4090, Nvidia RTX A6000 and Intel Core i9 respectively. In summary,
this paper contributes the following:

• We show that the state-of-the-art PE-aware OoO non-zero
scheduling results in a considerable PE underutilization as
a result of intra-channel non-zero scheduling.

• We introduce our novel cross-HBM channel OoO schedul-
ing to allow non-zero migration among HBM channels to
reduce the number of pseudo stalls in the HBM channels’
data streams and improve the PE underutilization.

• We propose Chasoň, a resource efficient architecture to
support CrHCS for sparse algebraic kernels.

• We implement Chasoň tailored for SpMV on AMD Xilinx
Alveo U55c, demonstrating a real-world deployment across
diverse matrices, and getting improved PE utilization, per-
formance and energy efficiency over the baselines.

2 Background, Challenges, and Motivation
2.1 HBM-based Sparse Accelerators
HBM is an advancedmemory technology that uses vertically stacked
memory dies to allow high read and write bandwidth. HBM is
increasingly adopted in FPGAs and GPUs, where the need for
rapid memory access and high throughput is critical. Prior stud-
ies [11, 23, 57, 67, 68, 81] have been leveraging the parallel accesses
to HBM channels to accelerate the memory bound applications
such as sparse algebra with certain trade-offs. Each HBM chan-
nel is typically assigned to a dedicated architectural module, e.g.
processing element group (PEG), ensuring that the architecture
aligns seamlessly with the way data was scheduled. For example, a
prior study [11] introduces a new sparse matrix format that aids
in reducing the read after write (RAW) dependency distance and
moving non-zero values from the HBM to the compute cluster
units. However, it works poorly on imbalanced matrices. Another
accelerator [57] uses HBM channels to compute SpMV in parallel in-
dependently of other processing elements. It is an expensive design
in terms of on-chip BRAM usage and runs at 221𝑀𝐻𝑧 frequency
which is less than that of 237𝑀𝐻𝑧 in other work [11]. However, it
gives better performance for imbalanced workloads. In Serpens [67],

Figure 1: Row-based Non-zero Scheduling–A group of 4 val-
ues are mapped to four PEs in-order. These groups may have
zeros because of lack of non-zero values in the rows mapped
to specific PEs

the non-zero values are scheduled for each HBM channel. Similar
to other HBM-based accelerators, it exploits the parallelism offered
by HBM by allocating 8 PEs to each HBM channel. This configu-
ration ensures that computations associated with different HBM
channels are executed concurrently. Other studies [68] and [23]
have proposed SpMM and sparse triangular solver (SpTRSV) ac-
celerators and also work by processing the data streams coming
from each HBM in parallel. In all these HBM-based accelerators,
the performance is heavily influenced by how data is scheduled in
each HBM channel and PEGs. As a result, efficient non-zero sched-
uling strategies are critical to fully leveraging HBM bandwidth and
maximizing computational throughput—a challenge we explore in
this work.

2.2 Non-Zero Scheduling
Row-Based Non-zero Scheduling. Another approach is row-based
parallelization [3, 71, 76], where all non-zeros from the same row
are scheduled for the same PE. Figure 1 shows an example of row-
based scheduling. In this example, 4 rows are mapped to channel
0. These four rows are distributed across 4 PEs associated with
channel 0. The four PEs are processed in parallel and get a value
from a group. Rows are assigned to the PEs according to:

𝑃𝐸𝑖𝑑 = 𝑟𝑜𝑤𝑖𝑑%𝑇𝑜𝑡𝑎𝑙𝑃𝐸𝑠 (1)

𝑃𝐸 [𝑃𝐸𝑖𝑑 ] ← 𝑟𝑜𝑤𝑖𝑑 (2)

Row 0 is assigned to PE0, row 1 is assigned to PE1 and so on. That
is, PE0 gets (1,2,3) non-zero values. Figure 2a shows the timeline
of PE0 pipeline, wherein row 4, row 8 and row 12 (all mapped
to PE0) are also shown. We assume that the partial products are
already available and now the PE is doing accumulation of these
partial sums. The accumulation operations takes 10 cycles on the
Xilinx Alveo U55C, U280, and U250 [23, 57, 67, 68] as shown by
the 10 stages of accumulation instruction in the figure. Figure 2a
also shows the PE0 instructions based on the row-based non-zero
scheduling. We can observe the following:

• This pipeline is not fully utilized because second instruction
(I2) has to wait for the first instruction (I1). The reason is
RAW dependency between these two instructions. I2 needs
r0_op1 which is available only after 10 cycles.
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Figure 2: Timeline of PE0 associated with Channel 0 based on different non-zero scheduling schemes

Consequently, PE0 is highly underutilized and outputs only 0.10
non-zeros per cycle. A fair question that arises here is whether I2
can begin execution based on the intermediate result from stage
1 of I1, especially given that PE0 performs accumulation over
10 stages. The answer is no. HLS tools and FPGA architectures
do not support such fine-grained, stage-level forwarding. Instead,
dependent instructions must wait for the complete output of their
predecessors before execution can begin.

PE-Aware Non-Zero Scheduling. State-of-the-art works [23, 67,
68] use an out-of-order scheduling scheme called PE-aware non-
zero scheduling. It is built on top of row-based parallelization to
reduce the stalls in the pipeline of PEs. The main idea is to map rows
to a PE in a round-robin fashion. Figure 2b shows an example of
PE-aware non-zero scheduling. We can see that instead of assigning
all values of row 0 to PE0 before proceeding to row 4 (similar to
row-based non-zero scheduling), PE-aware non-zero scheduling
interleaves the mapping—alternating between values from row 0
and row 4 in a round-robin fashion. It can be observed that PE0
can now start I2 in 2nd cycle. This is an improvement over row-
based scheduling which started I2 in 11th cycle because of RAW
dependency. However, this approach introduces a limitation. As
shown in Figure 2b, row 20 to row 36 has no non-zero values. This
will lead to stalls in the PE pipeline starting in cycle 6 of stage 1.
For this example, there will be 5 stalls in the PE pipeline, leading to
50% PE underutilization. Instruction 7 (I7) can not start in cycle 7
because it depends on (r0_op1) which is being generated by I1.

PE-aware non-zero scheduling maps at least 10 rows per PE.
Whether this leads to improved PE utilization ultimately depends
on the number of non-zero values in those rows. In case it fails to
find any non-zero value in a row, PE-aware non-zero scheduling
places a zero in the datalist of channel. These zeros are analogous
to idle PEs. In the architecture, when a zero is sent to a PE, all asso-
ciated computations—such as multiplication and accumulation—are
skipped, signifying the same stalls as shown in Figure 2b.

In the prior works [23, 67, 68], PE-aware non-zero scheduling
explicitly inserts these zeros into the data list of HBM channels to
guide the HLS tools to maintain the pipeline initiation interval (II)
equal to 1. Otherwise, HLS will conservatively increase the II to
10 cycles [68], resulting in unexpected sub-optimal performance.
On the other hand, an architecture designed using register-transfer
level (RTL) does not require explicit zeros in the data list. Instead,

the pipeline naturally stalls when no valid computation is avail-
able, without enforcing an increased initiation interval (II). Hence,
avoiding the need to pad the data list explicitly.

Figure 3 shows that, for most real-life datasets, PE-aware non-
zero scheduling still leaves around 70% of the PEs underutilized.
To get these results, we ran experiments on 800 matrices from
SuiteSparse [7] matrix collection. The matrices are from different
domains and their density ranges from 10−5 %− 101 %. We plot the
percentage of stalls (PE underutilization %) in Figure 3 as a proba-
bility density function to show the PE underutilization percentage
in 800 matrices. The main reason for PE underutilization is that
PE-aware non-zero scheduling only uses the non-zeros from the
rows that are mapped to a specific HBM channel. In case there are
not enough non-zero values in the rows that are assigned to a PE of
that HBM channel, it lacks the ability to go fetch a non-zero value
that belonged to a row of another HBM channel.

Our Proposed Scheduling. The goal of this work is to realize
such data retrievals by enabling non-zero migration across HBM
channels. Figure 2c shows the pipeline based on our proposed novel
scheduling scheme, CrHCS. To keep the pipeline filled, CrHCS
fetches non-zero values from the neighboring channel. CrHCS is
able to fetch the values from the rows, irrespective of which PE
they are assigned to in their channel. As shown in Figure 2c, PE0
of channel 0 now executes the instructions that belonged to any
of the four PEs associated with channel 1. These instructions are
inserted in between I7 and I6. Consequently, the pipeline remains
filled and the PE underutilization goes to 0%, providing maximum
throughput.

2.3 Key Insight
To mitigate the aforementioned challenges, our key insight is that
the scheduling mechanism can be simply extended to fetch or mi-
grate values from a neighboring channel to fill the stalls in the PE.
Based on this, we introduce a novel scheduling scheme, cross-HBM
channel out-of-order scheduling (CrHCS), to enable data migration
across HBM channels, thereby reducing the percentage of stalls
and effectively improving PE utilization and performance efficiency.
On the architecture side, we propose our novel and efficient archi-
tecture, Chasoň, to support CrHCS and segregate computations
corresponding to data from various HBM channels, ensuring syn-
chronized and functionally correct accelerated sparse algebraic
operations.
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Figure 3: Percentage of stalls based on state-of-the-art PE-
aware non-zero scheduling [23, 67, 68] in 800 SuiteSparse
matrices (lower is better)– 70% PEs are underutilized for ma-
jority of 800 matrices. Our goal is to move the curve to as far
left as possible, that is, reduce the PE underutilization.

3 Chasoň – Scheduling
In this section, we introduce our novel OoO non-zero scheduling,
CrHCS. The number of zeros in an HBM channel data list are
analogus to idle PEs (as descirbed in Section 2.2).

3.1 Cross-HBM Channel OoO Scheduling
CrHCS is built on top of state-of-the-art PE-aware non-zero OoO
scheduling [23, 67, 68]. The key idea of CrHCS is to incorporate
cross-HBM data migration to improve the PE utilization by migrat-
ing the non-zero values from a data list of one channel to the other.
CrHCS can migrate the non-zero values from more than one neigh-
boring channel. However, in our discussion and implementation
we limit the data migration to the immediate next channel only.
Figure 4 shows the overview of the CrHCS. Each HBM channel
is associated with a group of 4 PEs, referred to as a Processing
Element Group (PEG). These 4 PEs run in parallel. In Figure 4, only
the PEG for channel 0 is shown. Initially, the number of stalls in
HBM channel 0 is 6. This signifies 6 instances of idle PEs and hence,
a PE underutilization of 50% in the PEG of channel 0. CrHCS mi-
grates the values from the first next channel, that is, channel 1 and
schedules them in channel 0. As a result, channel 0 is full of non-
zero values, and its corresponding PEG will be 0% underutilized.
Similar to the prior works, the data lists of each channel will be
resized to make them all equal to the longest channel list, allowing
synchronized completion of the final computation. The details of
CrHCS are discussed below.

3.2 Data Structure for CrHCS
According to [45], the ideal bitwidth of read (Rd) or write (Wr)
modules for an HBM channel is 512 bits. Prior works [11, 23, 57,
67, 68] use 64 bits per sparse element. They allocate 32 bits for the
non-zero values and 32 bits for the row and column indices. Eight
64-bit values are coalesced and sent to the PEG corresponding to
the specific HBM channel. The order of coalescing the eight sparse
elements directly determines the PE assigned to it in the PEG. For
instance, the first 64-bit value is allocated to PE0, the second 64-bit
element to PE1, and so on. This ensures synchronization with the
other architectural modules.

In CrHCS, the stalls are replaced by migrating the data from
the first next HBM channel. However, it leads to functional in-
correctness due to on-chip memory bank conflicts in the partial

Figure 4: Functionality of CrHCS applied on channel 0– Data
is migrated from channel 1 (shared channel) to channel 0
(private channel). CrHCS also respects the RAW dependency
among themigrated data to keep the pipeline filled. The stalls
are reduced from 6 to 0 in the PEs associated with Channel 0
after applying CrHCS.

sum accumulation step, because the partial outputs of neighboring
channel values may accumulate with current channel values. A
memory conflict occurs if both sets of values attempt to access the
same memory index simultaneously, causing read/write contention.
This results in an increased initiation interval and ultimately de-
grades performance. requires To avoid this, CrHCS uses a unary
bit pvt flag to track the source of non-zero value. The flag indicates
whether a non-zero value belongs to another HBM channel (pvt=0)
or belongs to the current HBM channel (pvt=1). CrHCS also keeps
track of the PE the non-zero value originally belongs to using the
PE_src flag. Given that the PEG consists of eight PEs (details in
Section 4.2), PE_src only needs 3 bits. Without pvt and PE_src
flags, Chasoň could mistakenly accumulate shared channel partial
outputs with private channel partial sums, leading to incorrect ac-
cumulation and corrupted results. The overall distribution of one
64-bit element in CrHCS has 32-bit float value, 15-bit row index,
1-bit pvt flag, 3-bit PE_src flag, and 13-bit column index.

3.3 RAW Dependency in the Migrated Data
CrHCS must respect the dependency distance between non-zero
values coming from the neighboring HBM channel. Consider the
example in Figure 4. CrHCS is applied on channel 0, that is, the
data is migrated from channel 1 to channel 0. We can see that the
non-zero values A and B from channel 1 belong to the same row
(row 1). CrHCS schedules A in the channel 0 for PE1 in 1st cycle
((pvt,PE_src) = (0,0)). If the dependency distance is assumed
to be 2 cycles, to avoid RAW dependency and keep the pipeline of a
PE1 filled, there must be a distance of 2 cycles before we schedule
another non-zero from row 1 in PE1 of channel 0. This is the reason
why when B is the candidate to replace the stall in channel 0 for PE1
in 2nd cycle, CrHCS skips B and rather uses C value from channel 1.
CrHCS keeps track of the earliest cycle in which a non-zero value is
scheduled for a PE in the destination i.e., if the current cycle of the
corresponding PE in the destination channel is lower, CrHCS skips
the non-zero value in channel 1 and proceeds to the next non-zero
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Figure 5: An example of scheduling using CrHCS on top of PE-aware non-zero scheduling
value. Our experiments have shown that CrHCS never fails to find
a RAW dependency-free value to migrate.

3.4 Advantage of using CrHCS-Example
Figure 5 shows an example of CrHCS applied on top of PE-aware
non-zero scheduling. In this example, there are three channels
and each is connected to a PEG that has four PEs. The HBM is
capable of sending 4 values every clock cycle, which are sent to
four PEs to be processed in parallel. It can be seen that PE-aware
non-zero scheduling results in 19 zeros (or equivalently 19 instances
of idle PEs) across 3 HBM channels and hence, 19/36 = 52% PE
underutilization. The stalls are due to the reasons explained in
Section 2.2. In Figure 5b-c, CrHCS is applied on this scheduled data.
In this example, we assume that there is no RAWdependence among
the migrated data and all the non-zero values can be migrated to a
neighboring channel.

In the first step, Figure 5b, CrHCS migrates the non-zero values
from channel 1 to channel 0 to fill the stalls. All the values of channel
1 can be migrated as we assumed that there is no RAW dependence
in the migrated data,

This results in significantly large number of stalls in channel 1.
CrHCS continues to fill these stalls using the values from channel
2 as seen in Figure 5c. It is interesting to observe that all the non-
zero values from channel 2 are placed contiguously. This raises an
important question: why does CrHCS not take into account the
stalls shown in channel 2 in Figure 5a? It is because now the non-
zero values will be accumulated in another PE. The partial sums
of different PEs of shared channels are segregated using different
URAMs (more details in Section 4.2). For example, the channel 2
non-zero value originally scheduled for PE2 in cycle 2 will be now
processed in cycle 2 in PE0 associated with channel 1. And based
on our assumption that there is no RAW dependency between the
migrated value, it is allowed in PE0 of channel 1.

In the last step, CrHCS schedules channel 2 by migrating the
values from channel 0 as shown in Figure 5d. Note that CrHCS only
migrates the values that originally belonged to channel 0, that is,
the blue values. This introduces some stalls in Channel 0 but this
step is necessary to ensure a minimal load imbalance between the
PEGs associated with Channel 0 and Channel 2.

We can deduce two important advantages of CrHCS from this
example. First, all the non-zero values can now be processed in
only two cycles. This also reduces the number of transfers from
the HBM to the PEs and consequently increases the throughput
of the underlying architecture. Second, now that the data is sched-
uled among two cycles, the number of stalls and equivalently, PE
underutilization is reduced to 7/24 = 29%.

Figure 6: High Level Architecture of Chasoň– Each channel
streams eight 64-bit sparse matrix elements to a PEG. The
partial output data from each PEG is arranged in a single
stream in the Rearrange Unit. FIFO streams are used to move
data between different units.

4 Chasoň – Architectural Support
In this section, we introduce our novel architecture Chasoň, which
provides the architectural support required by CrHCS in the state-
of-the-art OoO SpMV accelerator, Serpens [67]. We will briefly
discuss the SpMV processing order and go into more detail about
the architectural details of Chasoň.

4.1 High-Level Overview
Chasoň is a streaming accelerator built on the top of Serpens. The
high-level architecture is shown in Figure 6. It uses 16 HBM chan-
nels to stream in sparse matrix A, which has already been scheduled
offline using CrHCS. Each of these 16 HBM channels has a PE group
(PEG) that houses 8 PEs. Dense input vector ®𝑥 , ®𝑦 and dense output
vector ®𝑦 are allocated only one channel each owing to their smaller
size as compared to sparse matrix A. Due to limited on-chip mem-
ory, the entire dense vector ®𝑥 can not be saved in it. For that reason,
the problem is partitioned into segments of sizeW, equal to 8192,
as the column indices are reduced to 13 bits (described in 3.2). The
instruction order is generated in the preprocessing and passed on
to the PEG using one of the HBM channels. The SpMV processing
order is similar to Serpens [67].

4.2 Processing Element Group (PEG)
As shown in Figure 7a, PEG has eight PEs and a Reduction Unit.
A PE performs the MAC operation and stores the resulting partial
sums in the correct on-chip memory location. The Reduction Unit
is responsible for gathering and reducing these partial sums. The
details are discussed below.

4.2.1 Processing Element (PE). A PE has a multiplier, an adder
unit, and on-chip memory. The non-zero value is multiplied by the
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Figure 7: Architecture of a PEG– There are eight PEs and a Reduction Unit in a PEG. Partial outputs associated with private and
shared channels are routed to their respective on-chip memory. The Reduction Unit gathers the partial outputs and reduces
them using an adder tree configuration.

dense vector ®𝑥 saved in on-chip dual-port block RAM (BRAM) sim-
ilar to Serpens [67]. The BRAMs are dual-port, and hence, Chasoň
requires only four of them to store the dense vector ®𝑥 as shown in
Figure 7a. The accumulated partial sums are stored in the on-chip
memory, which is a 72-bit wide ultra RAM (URAM) and can house
two FP32 partial sums per slot. This on-chip data storage limits the
random accesses to ®𝑥 and partial sums within the chip. To support
CrHCS, Chasoň has to do the following:

• Segregate the partial sums associated with a neighbor-
ing/shared channel from the partial sums belonging to the
current/private channel.

• For the non-zeros values coming from the shared channel, it
must also segregate the partial sums that belong to different
PEs in its origin channel. For example, the partial sums
computed in PE0 of channel 0 may belong to PE7 and PE6
of channel 1 and Chasoň must keep track of the partial
sums associated with these different PEs.

Chasoň uses (pvt,PE_src) flags encoded in the input data to
achieve this goal. If the multiplication output belongs to a pri-
vate channel (pvt=1), then the partial sum will be fetched from
URAM_pvt for the addition operation. However, if it belongs to a
shared channel (pvt=0), Chasoň must identify its corresponding
PE in the shared channel. This is achieved using PE_src flag. The
partial sum is fetched from the corresponding URAM_sh in Shared
Channel URAM Group (ScUG) and sent to the adder unit. For both
private and shared URAMs, the output of the adder is written back
to the same location from which the partial sum was retrieved.
This data routing is achieved by a simple combination of muxes,
housed within the Router unit in each PE. Data routing within the
PE is necessary to maintain the functional correctness of the SpMV
kernel.

4.2.2 Reduction Unit. Each PE consists of one ScUG, resulting
in eight ScUGs per channel as there are eight PEs per channel. Each
URAM in the ScUG stores the data for relevant PE in the shared
channel. For example, in channel 0, URAM_sh0 in all eight ScUGs
will store the partial sums for PE0 of channel 1. In the Reduction
Unit, the architecture sweeps through all the URAMs in the eight
ScUGs and reduces their values using an adder tree configuration,
consolidating the results into a single URAM per PE as shown in
Figure 7c.

As shown in Figure 7c, the 𝑘-th URAM_sh from all the eight ScUGs
will be gathered and reduced, and the final output will be written

Figure 8: Functionality of Rearrange Unit– The Re-order Unit
arranges the streams associated with shared channel in the
same order as the streams associated with private channel.

back to URAM_sh0. The final values in this URAM_sh0 represent the
partial sums corresponding to the 𝑘-th PE of the shared channel
(where 𝑘 = 0, 1, ...7).

4.3 Rearrange Unit
Each PEGhas final partial sums in eight URAM_pvt and eight URAM_sh0.
Their values will be gathered into one stream of 8 FP32 values each,
that is, pvt_ch and sh_ch. As shown in Figure 8, the streams of
shared channel (sh_ch) coming from PEG do not have the same
order as streams of private channel (pvt_ch). This occurs because
Chasoň employs the CrHCS strategy to perform MAC operations
corresponding to the neighboring channels. To ensure functional
correctness, the shared streams must correspond to the channel
they belong to. The Re-order Unit handles this task by rearranging
the streams to ensure that both the private and shared streams
are aligned in the correct order, as shown in Figure 8. The Arbiter
Unit and Merger Unit works similarly to the ones in Serpens [67]
ow they concatenate as well as reduce two types of streams, that
is, private channel (pvt_ch) and shared channel (sh_ch) streams.
These units only do concatenate operation and solely on private
channel streams in Serpens [67]. In addition to collecting (pvt_ch)
values from 2 neighboring channels, the Arbiter Unit in Chasoň
will do the same for (sh_ch) and pass them to the Merge Unit.
In the Merge Unit eight pvt_streams and eight sh_streams will be
added/reduced to make sure all output values corresponding to
a channel have been computed. The resultant eight streams will
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be then merged into one 16 FP32 values stream (stream_Ax) and
passed to the Dense Vector Kernels unit shown in Figure 6. Dense
vector kernels are trivial logic and work on a single stream of data.

4.4 Novelty over Serpens Architecture
Serpens [67] employs eight PEs per PEG, similar to Chasoň. How-
ever, its PEs can only process data from private channels, as Ser-
pens [67] not support cross-channel data migration. Each PE in
Serpens consists of a multiplier, an adder, and a URAM for storing
partial outputs. Additionally, Serpens [67] lacks a Reduction Unit.
While it includes an Arbiter Unit and a Merger Unit, these compo-
nents solely concatenate private streams without performing any
reduction, unlike Chasoň (as described in Section 4.3). To ensure
a fair comparison, Chasoň maintains the same level of parallelism
as Serpens [67]. Both architectures use identical HBM and on-chip
memory configurations for storing input data, resulting in the same
number of PEGs.

4.5 Resource Consumption
Chasoň uses on-chip memory to support CrHCS. The partial sums
associated with a private channel are stored in each PEG in one
URAM (URAM_pvt). The partial sums for shared channel are stored
in ScUG in each PEG, and each ScUG has a size of 8 URAMs. Hence,
the total number of URAMs required are:

Number of URAMs = (𝑃𝐸𝐺 × 8) +
+ (𝐶𝐻𝐴 × 𝑃𝐸𝐺 × 𝑆𝑐𝑈𝐺 𝑆𝑖𝑧𝑒) (3)

The total number of URAMs is 1024, which is more than the
available 960 URAMs on Alveo U55c. To address this, we reduced
the design size by decreasing the number of URAMs per ScUG to
4, bringing the total URAM usage down to 512 (52% of available).
Theoretically, each PE requires at least one URAM_sh in ScUG and
one URAM_pvt. This reduces the URAM usage to 256, each provid-
ing 36𝐾𝐵 storage on Alveo U55c. Although it does not affect the
performance, it results in decreasing the size of the input sparse
matrix 𝐴 that can be processed in a single pass. In such a situation,
we partition the bigger sparse matrix 𝐴 and feed the partitions into
Chasoň.

As mentioned earlier, our implementation of Chasoň utilizes a
total of 512 URAM blocks. This results in a total on-chip memory re-
quirement of 18 MB for storing partial outputs in Chasoň, which is
slightly higher compared to the 13.5 MB employed in Serpens [67].
The increased URAM usage is required to segregate the partial
sums of shared and private channels and is fundamental to the
architecture of Chasoň. Importantly, this additional URAM is used
solely for data storage and does not impact the critical computation
path. As such, it does not introduce any performance bottlenecks.
In the Alveo U55c platform, URAM blocks have uniform access
latency, regardless of quantity, which ensures that scaling up or
down URAM usage does not degrade access latency or stall the
pipeline. To store the dense vector ®𝑥 , similar to Serpens [67], Cha-
soň uses 1024 18Kb dual port BRAM blocks (32 BRAMs blocks per
PEG), that is, consuming a total of 2.5MB on-chip memory for ®𝑥 .
Autobridge [18] seamlessly generates the bitstream file for Chasoň.
The final layout of Chasoň, shown in Figure 9, achieves a frequency
of 301MHz outperforming the 223 MHz frequency of Serpens.

Table 1: Xilinx Alveo U55c Resource Consumption for Cha-
soň and Serpens[67]. Architecture

Serpens Chasoň
LUT 219K(16%) 346k(26%)
FF 252K(9.6%) 418K(16%)
DSP 798(9.6%) 1254(13%)

BRAM18K 1024(28%) 1024(28%)
URAM 384(40%) 512(52%)

Chasoň achieves an increased frequency due to reduced logic con-
gestion and distributed on-chip memory traffic as compared to
Serpens [67] which routes all the partial outputs generated by a PE
to only one URAM.

The detailed resource utilization for Chasoň and Serpens [67]
is given in Table 1. It compares the FPGA resource utilization of
Serpens and Chasoň. For the sake of fair comparison, they both use
the same number of PEs and PEGs to maintain equivalent levels
of parallelism. The additional FPGA resources used by Chasoň are
used to implement the Reduction Unit, Re-order Unit and Router. If
we were to perform an iso-area comparison by scaling up Serpens
to use the same amount of FPGA resources as Chasoň does, Serpens
could have deployed more than eight PEs per PEG. However, such
a configuration would not translate to speedup in Serpens because
the eight PEs per PEG is selected to offer the right balance between
memory and computation speed as 512-bit HBM channel width
dictates eight non-zero values per read.While the numbers reported
in Table 1 reflect the hardware cost for both Chasoň and Serpens,
the reported resource consumption is not directly related to the PE
underutilization, the key metric that Chasoň improves. Accordingly,
using a resource-constrained FPGA, and improving the percentage
of resource consumption, does not imply improved PE utilization.

5 Experimental Setup
In this section, we discuss the methodology used to build and eval-
uate Chasoň. The experimental methodology is similar to prior
works, ensuring a fair and comprehensive comparison.

5.1 Hardware Implementation
Chasoň is implemented using Xilinx Vitis 2023.2 C++ high-level
synthesis (HLS) and TAPA [17] framework. We use AMD Xilinx
Alveo U55c for hardware implementation. Alveo U55c has 16GB of
32-channel HBM, providing peak memory bandwidth of 460 GB/s
(14.37GB/s per channel). Chasoň uses 19 channels and achieves
the peak bandwidth of 273GB/s. Alveo U55c is connected via PCIe
Gen3 x16 to allow quick data transfer between the host and HBM.
We use Rapidstream Autobridge [18] to place and route Chasoň
on Alveo U55c. Figure 9 shows the layout of Chasoň. Alveo U55c
has three super logic regions that are further divided into blocks
(or clock regions). The FPGA resources are distributed across these
blocks. For example, the on-chip memory in Figure 9 may appear
concentrated on one side but it is actually spread across different
SLRs and further different blocks. The HBM memory is distributed
in stacks of two, each with 16 channels. Autobridge [18] maps
the majority of Chasoň logic, shown in blue, in the first two Su-
per Logic Regions (SLRs). The on-chip memory is mapped on the
fixed cell regions shown in orange. Chasoň achieves a frequency of
301MHz and 48.715W estimated power. The power distribution
is shown in Figure 10. We can observe that Chasoň logic is only
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Figure 9: Layout of Chasoň implemented on Xilinx Alveo
U55c– The logic of Chasoň is shown in blue with on-chip
memory components in orange. Autobridge [18] maps the
majority of Chasoň’s logic near the HBM channels.
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Figure 10: Power distribution of Chasoň implemented on
Xilinx Alveo U55c– HBM is taking themost amount of power,
with Chasoň’s logic only taking 8% of the total power.
taking 8% (2.76𝑊 ) of the total power. The on-chip memory power
consumption is also very small, that is, 3% (1.24𝑊 ) and 4% (1.51𝑊 )
for BRAM and URAM, respectively. We also verify that the output
of the SpMV kernel is correctness, ensuring end-to-end functional
correct of Chasoň. This confirms the reliability and consistency of
both CrHCS and its architectural support.

5.2 Baselines
We compare Chasoň with the state-of-the-art OoO SpMV accel-
erator, Serpens [67], the source code of which is available online.
The HBM configuration is kept the same for both Chasoň and
Serpens [67]. Serpens [67] also partitions the problem size into a
window of𝑊 = 8192. To ensure a fair comparison, we generate its
bitstream file for Alveo U55c using Rapidstream Autobridge [18].
It achieves 223MHz frequency which is less than 301MHz fre-
quency of Chasoň. We also compare Chasoň against the official
open-source cuSparse library’s SpMV implementation [52], running
on Nvidia RTX 4090 and Nvidia RTX 6000 Ada with cuda v10.1. The
consumer-class Nvidia RTX 4090 offers 24GB of GDDR6X 384-bit
wide memory with 1008GB/s bandwidth. However, the server-class
Nvidia RTX 6000 Ada offers 48GB GDDR6 384-bit wide memory
with 768GB/s bandwidth. They both have 128KB lower-level cache
per SM. Their L2-cache is 72MB and 96MB respectively. RTX 4090
features 144 Streaming Multiprocessors (SMs) and RTX A6000 has
84 SMs, with each SM containing 128 CUDA cores. For the CPU
baseline, we use Intel oneAPI Math Kernel Library (MKL) v2024.2.2
running on Intel Core i9-11980HK. It runs at the base frequency of

Table 2: SuiteSparse [7] and SNAP [35] matrices.
ID Dataset NNZ Density %

SuiteSparse Matrices
DY dynamicSoaringProblem_8 38136 0.303
RE reorientation_4 33630 0.455
C5 c52 20278 0.00035
MY mycielskian12 407200 4.31
VS vsp_c_30_data_data 124368 0.102
TS TSC_OPF_300 820783 0.859
LO lowThrust_7 211561 0.0700
HA hangGlider_3 92703 0.0880
TR trans5 749800 0.00541
CK ckt11752_dc_1 333029 0.0138

SNAP Matrices
WI wiki-Vote 103689 0.1506
EM email-Enron 367332 0.0272
AS as-caida 106762 0.0108
OR Oregon-2 65406 0.0469
WK wiki-RfA 188077 0.145
SC soc-Slashdot0811 905468 0.0151
A7 as-735 26467 0.0444
CM CollegeMsg 20296 0.562
WB wb-cs-stanford 36854 0.0374
RE Reuters911 296076 0.1667

3.3GHz and has 24MB Intel Smart Cache. We run the GPU baselines
for 10 iterations and average the performance metrics. For the CPU
experiments we calculated an average of 100 measured iterations
after 100 warm-up runs. For Chasoň and Serpens, we perform 1000
iterations of each experiment. The higher iteration count than CPU
and GPU is necessary to amortize the overhead associated with
bitstream transfer and FPGA reconfiguration, allowing us to better
evaluate the raw performance of the SpMV kernel itself.

5.3 Evaluated Metrics
To ensure a fair comparison, we adopt the methodology for mea-
suring evaluation metrics that align with the methods employed in
prior works [11, 23, 57, 67, 68].
PEUnderutilization: It is measured as the percentage of instances
the PEs remain idle relative to the instances they are actively en-
gaged in performing computations on non-zeros. Since Chasoň is
designed using HLS, an instance of idle PE is represented as a 0
in the data list of HBM channels (described in Section 2.2). As a
result, we can conveniently measure the PE underutilization offline
by finding the percentage of stalls in data of all 16 sparse matrix A
channels. Mathematically, it is given as:

PE Underutilization %=
∑15
𝑐ℎ=0 Number of Stalls

𝑁𝑁𝑍 +∑15
𝑐ℎ=0 Number of Stalls

×100 (4)

Latency: We calculate the time taken by Chasoň and Serpens
using Xilinx Run Time and standard C++ time routines. We use
cudaEventElapsedTime to get the execution time on GPU. We
further validate the kernel execution time using the latest Nvidia
Nsight Compute. For the CPU, we use Intel MKL built-in profiling
functions to measure the execution time. We run the execution
multiple times and take an average to nullify the effect of any
unwanted overheads.
Throughput: For all the underlying architecture, we measure the
throughput (𝐺𝐹𝐿𝑂𝑃𝑆) of the SpMV kernel as:

Throughput =
2 × (𝑁𝑁𝑍 + 𝐾)
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑛𝑠) (5)
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where, NNZ is the number of non-zeros and K is the size of dense
vector ®𝑥 , or equivalently, the number of columns in sparse matrix
𝐴.
Energy Efficiency: For FPGA implementations, we calculate the
power consumption using xbutil. We utilize nvidia-smi for GPU
measurements. For CPU, we sample the package-level Intel RAPL
counter located at /sys/class/powercap/intel-rapl:0/energy_uj
and divide it by the time elapsed to get power. Energy efficiency is
measured as the throughput harnessed per unit watt. Ideally, we
want to harness maximum throughput by spending the smallest
amount of energy. It is given as:

Energy Efficiency =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝐺𝐹𝐿𝑂𝑃𝑆)

𝑃𝑜𝑤𝑒𝑟 (𝑊 ) (6)

Bandwidth Efficiency: It is measured as the throughput harnessed
per giga bytes of the transfer data.

Bandwidth Efficiency =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝐺𝐹𝐿𝑂𝑃𝑆)
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝐺𝐵/𝑠) (7)

5.4 Dataset
We use 800 matrices from SuiteSparse [7] and SNAP [35] dataset to
evaluate Chasoň. The density of these matrices ranges from 10−6
to 10−1, with the number of non-zeros (NNZ) varying from 103 to
106. The selected matrices are small enough to fit within the L2
cache of the GPU and the 24 MB L3 cache of the CPU. This makes it
even more challenging for Chasoň to achieve speedup, highlighting
the significance of its gains. For an in-depth analysis, we evaluate
Chasoň against Serpens [67] on 20 matrices from SuiteSparse [7]
and SNAP [35] collection shown in Table 2. These matrices are
randomly selected to better reflect the inherent randomness and
structural unpredictability of sparse matrices, ensuring an unbiased
evaluation of Chasoň.

5.5 Data Precision:
Chasoň uses 32-bit floating-point values, consistent with Serpens.
Each non-zero also carries necessary 32 bits of metadata (as de-
tailed in Section 3.2), allowing a 512-bit HBM channel to transfer
up to 8 non-zero entries per cycle. The number of non-zeros trans-
ferred and the parallelism in each PEG depend directly on the bit
precision. Reducing the precision enables more than 8 PEs to be
instantiated and operated in parallel, though it increases overall
memory demand as more URAM_sh will be required per ScUG. Con-
versely, higher-precision formats reduce the number of parallel
operations. For instance, using 64-bit floating-point values with
32-bit metadata limits both Chasoň and Serpens to transferring
only 5 non-zero entries per cycle, which means that not all 8 PEs
can be fully utilized and the parallelism in each PEG reduces from
8 to 5 PEs and similarly required URAM_sh per ScUG reduces to 5.

6 Evaluations and Results
In this section, we evaluate Chasoň with the aforementioned base-
lines. We give a detailed analysis of improvement in PE underuti-
lization and discuss how it translates to performance gains. In the
end, we will discuss the on-chip resource consumption of Chasoň.

Figure 11: PE underutilization % in Chasoň and Serpens for
800 SuiteSparse [7] and SNAP [35] matrices (lower is better).

6.1 PE Underutilization
One of the main goals of this work is to reduce the PE underuti-
lization, that is, to ensure that the PEs are actively engaged in
computations for the majority of the time. We run experiments on
800 matrices to evaluate the PE underutilization exhibited in Cha-
soň and Serpens [67] as a result of doing CrHCS and the PE-aware
non-zero scheduling, respectively. In Figure 11a, we plot the PE
underutilization for both of them as a probability density function
(PDF). The y-axis shows the likelihood or frequency of a given
PE underutilization percentage occurring across the experiments.
In Serpens [67], there is a high probability of PE underutilization
greater than 50%, with the most likely rate being 69%. Chasoň
reduces the PE underutilization to approximately 30%, with the
majority of datasets demonstrating resource underutilization below
50%. This is shown in Figure 11a, where underutilization below
50% exhibits a high probability for Chasoň. We also show the PE
underutilization for 800 matrices in Figure 11b. Chasoň exhibits
PE underutilization in the range of 5% - 66%, which is significantly
lower than the range of 19% - 96% in Serpens.

In addition, Figure 12 shows the experiments on 20 datasets from
Table 2 for an in-depth analysis of PE underutilization. Figure 12
shows the PE underutilization as a function of PDF across 16 PEGs
for each matrix. We observe that in Chasoň, the PE underutilization
for each PEG is significantly smaller than Serpens. The widened
PDF curve of Chasoň highlights its ability to effectively balance
workloads across PEGs, showcasing its adaptability to irregular
or imbalance matrix patterns. This flexibility ensures that Cha-
soň maintains lower PE underutilization, making it particularly
suitable for real-world scenarios where workload distribution is
unpredictable and highly random. On the other hand, the narrower
PDF curve of Serpens [67] reveals its limitations in handling imbal-
anced matrices, as it struggles to adapt to irregular sparsity patterns
and dynamic workload variations. This results in higher PE under-
utilization, reducing its efficiency in less-structured workloads.

Ideally, to ensure fairness, a scheduling policy should evenly
distribute the stalls among PEG, such that no any PEG has sig-
nificantly disproportionate PE underutilization. Figure 13 shows
average PE underutilization in each PEG for 20 matrices listed in
Table 2. For Serpens [67], the underutilization reaches 95%. Chasoň
reduces this number to 60-65%. We observe that Chasoň distributes
the stalls evenly among all the PEGs. The variation between PE
underutilization of the PEGs is not that much, which means Chasoň
also ensures fairness while distributing stalls among 16 PEGs.

The PE underutilization is significantly reduced in Chasoň as
compared to Serpens. However, the underutilization in Chasoň is
not entirely eliminated, as achieving 0% resource underutilization

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

MICRO 2025, October 18–22, 2025, Seoul, Korea

Ubaid Bakhtiar, Amirmahdi Namjoo, and Bahar Asgari
University of Maryland, College Park

{ubaidb, namjoo, bahar}@umd.edu

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

0

0.4

0.8

1.2

1.6

0

0.05

0.1

0.15

0.2

80 85 90 95 100

DY

0

0.4

0.8

1.2

1.6

2

0

0.02

0.04

0.06

0.08

0.1

80 85 90 95 100

RE

0

0.5

1

1.5

0

0.1

0.2

0.3

45 65 85 105

C5

0

0.05

0.1

0.15

0.2

0

0.01

0.02

0.03

0.04

0 25 50 75 100

MY

0

0.2

0.4

0.6

0.8

0

0.05

0.1

0.15

0.2

75 85 95 105

VS

0

0.2

0.4

0.6

0.8

1

0

0.02

0.04

0.06

0.08

0.1

40 60 80 100

TS

0

0.4

0.8

1.2

1.6

0

0.05

0.1

0.15

0.2

80 85 90 95 100

LO

-0.4

0.1

0.6

1.1

1.6

0

0.05

0.1

0.15

0.2

80 85 90 95 100 105

HA

0

0.5

1

1.5

0

0.1

0.2

0.3

85 90 95 100 105

TR

0

0.5

1

1.5

0

0.05

0.1

0.15

58 68 78 88 98

CK

0

0.1

0.2

0.3

0.4

0

0.02

0.04

0.06

0.08

10 35 60 85

WI

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

40 60 80 100

EM

0

0.2

0.4

0.6

0.8

1

0

0.02

0.04

0.06

0.08

0.1

60 70 80 90 100

AS

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

70 80 90 100 110

OR

0

0.2

0.4

0.6

0

0.02

0.04

0.06

0 25 50 75 100

WK

0

0.2

0.4

0.6

0.8

1

0

0.02

0.04

0.06

0.08

0.1

0 25 50 75 100

SC

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

77 82 87 92 97

A7

0

0.1

0.2

0.3

0.4

0

0.02

0.04

0.06

0.08

40 65 90 115

CM

0

0.2

0.4

0.6

0.8

0

0.05

0.1

0.15

0.2

60 70 80 90 100

WB

0

0.2

0.4

0.6

0

0.02

0.04

0.06

10 35 60 85 110

RE

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n 

(P
D

F)

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n 

(P
D

F)

PE Underutilization (%)SerpensChasoň

Figure 12: PE underutilization % across 16 PEGs for the matrices listed in Table 2– CrHCS reduces the number of stalls in the
data list of each channel, resulting in significantly smaller PE underutilization in Chasoň as compared to Serpens [67].

Figure 13: Average PE underutilization % for each PEG for
the matrices listed in Table 2.

remains unattainable. The reason is that CrHCS fails to find enough
non-zero values in the first next channel to fill the stalls in a private
channel. CrHCS can get more data by referring to second next
channel. However, segregating the partial outputs for all shared
channels and the private channel requires more on-chip memory in
Chasoň. Given the limited on-chip resources available on the Alveo
U55c, we limit the data migration in CrHCS to only a single next
channel. If additional on-chip memory is available—for instance,
on a larger FPGA—the scheduling scope can be extended beyond
a single next channel to include two or even three subsequent
channels. This broader scheduling window can help fill idle cycles
and further reduce the peak PE underutilization in Chasoň, which
currently reaches up to 60–65%.

6.2 Performance Improvement
Now that Chasoň significantly reduces the PE underutilization com-
pared to Serpens [67], we analyze how this improvement translates
to the actual performance gains in Chasoň relative to the base-
lines. The performance gains are achieved through the combined
effects of CrHCS and our novel architectural support. These two
components are interdependent and cannot function effectively
without each other, and should therefore be considered together
when evaluating the sources of speedup.

6.2.1 Over GPU and CPU. We compare Chasoň over Nvidia
RTX 4090, Nvidia RTX A6000 and Intel Core i9-11980HK over a
wide range of matrices. We use 800 matrices from SuiteSparse [7]
and SNAP [35] collection with varying density and size as de-
scribed in Section 5.4. The peak throughput for the 800 matrices
is 30.23 𝐺𝐹𝐿𝑂𝑃𝑆 for Chasoň, 19.83𝐺𝐹𝐿𝑂𝑃𝑆 for Nvidia RTX 4090,
44.20𝐺𝐹𝐿𝑂𝑃𝑆 for Nvidia RTX A6000 and 23.88𝐺𝐹𝐿𝑂𝑃𝑆 for Intel
Core i9-11980HK. Figure 14 shows the performance speedup over
GPU and CPU baselines. The geometric mean speedup over Nvidia
RTX 4090 is approximately 4× with a peak speedup of 20.33×. The
geometric mean speedup over Nvidia RTX A6000 is approximately
1.28× with a peak speedup of 11.65×. Due to the highly sparse
nature of data, Nvidia RTX 4090 and RTX A6000 fail to effectively
use their peak compute capabilities. One of the reasons is the un-
derutilized ALU pipeline in streaming multiprocessors.

The peak speedup over Intel Core i9 is 2.67×. The geometric
mean speedup, however, is less than 1. Interestingly, the Intel Core
i9 outperforms Nvidia GPUs for SpMV. While GPUs excel at dense,
highly parallel workloads like GEMM, they struggle with sparse ker-
nels due to irregular memory access patterns and limited on-chip
memory. Additionally, our use of vendor-optimized libraries shows
that Intel’s MKL handles SpMV more efficiently than Nvidia’s cuS-
parse. Intel MKL uses advanced threading models and effectively
maximizes CPU core utilization for parallel computations. Intel
MKL also leverages the large on-chip memory available in CPU
(24MB in Intel Core i9-11980HK) to optimize the random memory
access patterns typically associated with sparse kernels. However,
this comes at the expense of increased power consumption. Ideally,
we want to harness maximum throughput by consuming the least
amount of energy. On average Nvidia RTX 4090 and Nvidia RTX
A6000 consume 70W and 65W, respectively, while Intel Core i9
takes 132W of power. Figure 14 shows that the peak energy effi-
ciency gain of Chasoň is 34.72×, 19.48× and 14.61× over Nvidia
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Figure 14: Performance over GPU and CPU baselines (higher
is better)– Top: Latency Speedup. Bottom: Energy Efficiency
(𝐺𝐹𝐿𝑂𝑃𝑆/𝑊 ) Gain.
RTX 4090, Nvidia RTX A6000, and Intel Core i9. The high energy
efficiency of Chasoň over Intel Core i9 and Nvidia RTX A6000 jus-
tifies their relatively low-performance speedup gain. It is worth
noting that Chasoň consumes less energy than both GPUs and
CPUs while delivering better performance. The reduction in power
consumption translates to lower operational costs, improved ther-
mal management, and increased system longevity, making it a
worthwhile choice for energy-conscious deployments.

6.2.2 Over Serpens. Figure 15 shows the (latency or throughput)
speedup achieved over Serpens[67]. The geometric mean speedup
is 6.1× and 4.1× for SuiteSparse [7] and SNAP [35] matrices, re-
spectively, and can go up to 8.4×. The detailed performance num-
bers are given in Table 3. Both Chasoň and Serpens [67] reach a
peak throughput of 30.28 𝐺𝐹𝐿𝑂𝑃𝑆 and 7.08 𝐺𝐹𝐿𝑂𝑃𝑆 for SuiteS-
parse [7] matrices respectively. The peak improvement is 8.4× for
reorientation_4 (RE) matrix with throughput approximately equal
to only 0.5 𝐺𝐹𝐿𝑂𝑃𝑆 in Serpens [67]. Similarly, for graph dataset
from SNAP [35] matrix collection, Chasoň and Serpens [67] reaches
a peak throughput of 27.36 𝐺𝐹𝐿𝑂𝑃𝑆 and 6.504 𝐺𝐹𝐿𝑂𝑃𝑆 respec-
tively with 5.84× peak improvement. The Serpens paper reports
a peak throughput of 46.43 𝐺𝐹𝐿𝑂𝑃𝑆 , but does not specify which
particular matrix this performance is based on. However, for the 12
matrices listed in the Serpens paper, Chasoň achieves a geometric
mean speedup of 1.17×, with 43.27 𝐺𝐹𝐿𝑂𝑃𝑆 and 41.11 𝐺𝐹𝐿𝑂𝑃𝑆
peak throughput for Chasoň and Serpens respectively. The speedup
is less pronounced in these cases due to RAW dependencies in the
migrated data which reduce the opportunity for CrHCS to fully
exploit its advantages, as explained in Section 3.3. In our evalu-
ation, we faithfully use the open-source Serpens artifact and run
all experiments on the Alveo U55c platform, which differs from
the Alveo U280 used in the original Serpens paper. Both Cha-
soň and Serpens[67] are streaming accelerators and continuously
stream data to the PEGs, hence they utilize peak memory band-
width of 14.37𝐺𝐵/𝑠 per channel. As a result, Chasoň achieves the
same bandwidth efficiency improvement, as illustrated in Figure 15.

Table 3: Detailed performance numbers of Chasoň and Ser-
pens evaluated on 20 matrices from SuiteSparse and SNAP .

ID
Latency Throughput Bandwidth Efficiency

Imp.
Energy Efficiency

Imp.(ms) (GFLOPS) (GFLOPS/(GB/s)) (GFLOPS/W)
Chasoň Serpens Chasoň Serpens Chasoň Serpens Chasoň Serpens

SuiteSparse Matrices
DY 0.017 0.125 4.876 0.666 10.599 1.447 7.353 0.125 0.04 3.125
RE 0.017 0.144 4.289 0.505 9.324 1.097 8.471 0.11 0.03 3.667
C5 0.033 0.141 13.569 3.219 29.499 6.998 4.273 0.348 0.194 1.794
MY 0.027 0.116 30.289 7.086 65.847 15.404 4.296 0.777 0.428 1.815
VS 0.037 0.243 7.386 1.116 16.055 2.425 6.568 0.189 0.067 2.821
TS 0.068 0.493 24.433 3.37 53.116 7.327 7.25 0.626 0.204 3.069
LO 0.063 0.392 7.319 1.167 15.912 2.537 6.222 0.188 0.07 2.686
HA 0.069 0.513 3.001 0.401 6.525 0.872 7.435 0.077 0.024 3.208
TR 0.88 6.473 1.971 0.268 4.284 0.582 7.356 0.051 0.016 3.188
CK 0.074 0.288 10.307 2.66 22.407 5.783 3.892 0.264 0.161 1.64

SNAP Matrices
WI 0.01 0.056 21.898 4.027 47.604 8.754 5.6 0.561 0.243 2.309
EM 0.056 0.223 14.515 3.631 31.553 7.893 3.982 0.372 0.219 1.699
AS 0.043 0.177 6.416 1.563 13.948 3.398 4.116 0.165 0.094 1.755
OR 0.026 0.147 6.059 1.053 13.171 2.289 5.654 0.155 0.064 2.422
WK 0.015 0.067 26.785 5.993 58.229 13.028 4.467 0.687 0.362 1.898
SC 0.101 0.302 19.42 6.504 42.217 14.138 2.99 0.498 0.393 1.267
A7 0.013 0.076 5.158 0.898 11.212 1.953 5.846 0.132 0.054 2.444
CM 0.003 0.018 12.986 2.524 28.231 5.488 6 0.333 0.152 2.191
WB 0.01 0.043 9.797 2.164 21.298 4.705 4.3 0.251 0.131 1.916
RE 0.023 0.119 27.365 5.182 59.489 11.265 5.174 0.702 0.313 2.243

We also measure the energy consumed by Chasoň and Serpens
during these tests. The actual power consumption comes out to be
approximately 39𝑊 and 36𝑊 . The increased power consumption
by Chasoň can be attributed to the following:

• Lower PE underutilization by the virtue of CrHCS.
• Slightly increased on-chip memory requirements for stor-

ing partial outputs of the shared channel.
• Higher achieved frequency of Chasoň (301𝑀𝐻𝑧).

To evaluate energy efficiency, we calculate the number of𝐺𝐹𝐿𝑂𝑃𝑆
each architecture achieves per watt of energy consumed. On av-
erage, Serpens is giving 0.16 𝐺𝐿𝑂𝑃𝑆/𝑊 while Chasoň gives 0.33
𝐺𝐹𝐿𝑂𝑃𝑆/𝑊 , that is, 2.03× improvement, making it an energy ef-
ficient architecture. The detailed energy efficiency numbers are
given in Table 3.
Reasons for Performance Improvement: In Section 3.4, we high-
light that a key advantage of CrHCS is its ability to reduce the
number of data transfers from HBM to the PEs. As a result, Cha-
soň sends more non–zero per transfer, minimizing unnecessary
HBM accesses. This optimization allows Chasoň to perform the
same amount of computation with fewer data transfers compared
to Serpens, which directly contributes to its performance speedup.
Figure 15 also shows the data transfer reduction by Chasoň. Cha-
soň transfers significantly less data compared to Serpens. For both
SuiteSparse and SNAP matrices, on average, Chasoň transfers ap-
proximately 7× less data than Serpens. While both architectures
process the same number of non-zero values, Chasoň avoids trans-
ferring redundant zeros by leveraging our novel CrHCS scheduling.
In contrast, Serpens uses PE-aware non-zero scheduling, which
results in additional zero-padding and higher data movement. This
reduction in unnecessary data transfer leads to better performance
of Chasoň over Serpens.

Chasoň does not necessarily achieve speedup equal to the factor
of data transfer reduction. This is due to the additional logic intro-
duced to support CrHCS—specifically, the Reduction Unit, Reorder
Unit, and Router. While these units introduce some latency, they
are fundamental to enable our enhanced scheduling. For example,
the data transfer reduction factor is 6.7× for the 𝐶5 matrix and
4.4× for the𝑀𝑌 matrix, 𝐶5 does not yield higher speedup. This is
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Figure 15: Speedup over Serpens [67] for SuiteSparse [7] and
SNAP [35] matrices.

because 𝐶5 has 23𝐾 columns compared to 3𝐾 in𝑀𝑌 , resulting in
deeper URAMs in the ScUG and a larger number of partial sums to
be accumulated in the Reduction Unit. As a result, the latency in
C5 increases and that offsets the benefits of data transfer savings.
Consequently, MY achieves better overall performance despite a
smaller data transfer reduction factor.

7 Discussions
7.1 Overview of Other Related Studies
SpMV Accelerators. The main goal of Chasoň is to improve PE
underutilization by reducing the number of stalls in the processing
pipeline. Chasoň is an HBM-based SpMV accelerator. However,
there are other categories of SpMV accelerators as well that use dif-
ferent techniques to accelerate the SpMV kernel. For instance, [39]
optimizes SpMV on FPGAs by reordering non-zero elements to
maximize data reuse, reducing the need for additional memory
requests by efficiently utilizing already fetched data. There has
been an increased focus on novel sparse data compression methods
to analyze their impact on accelerating SpMV [1, 54, 61]. Sparsti-
tion [65] is an example of incorporating HW/SW optimizations via
different partitioning schemes to efficiently parallelize SpMV kernel.
PrSpMV [14] is another example. It proposes an SpMV kernel that
makes predictions about memory accesses to data regularity and
locality to improve prefetching the accuracy of branch predictors
in SpMV computational loop. DASP [48] also makes the irregu-
lar data patterns in sparse matrices regular to exploit the matrix
multiply accumulator units. Multi-stage tree-based decisions are
also used for SpMV acceleration by Two-Step [62], MeNDA [13],
Spica [58] and [41]. Recent works are also exploring advanced
computing architecture to efficiently support SpMV. For example,
SpaceA explores processing-in-memory (PIM) architectures and
build functionality to order the memory access patterns before
sending the non-zero values to actual compute units [77]. With
the penetration of machine learning applications in the industry,
there has been a resurgence in systolic arrays. Sparse TPU [22] and
Flex-TPU [21] reuse a 2D tensor processing unit (TPU) to reduce the
memory access overhead and accelerate SpMV. Another systolic-
array-based accelerator, Conveyor [32], addresses the challenge of

the inherent mismatch between the dense structure of systolic ar-
rays and the unstructured sparsity found in data. To overcome this
issue, it introduces chunk propagation for parallelism, PE grouping,
and dynamic load balancing.

Other Sparse Algebraic Accelerators. As discussed in Section 2,
sparse algebra encompasses different sparse kernels. Researchers
have been proposing novel architectures to accelerate different
sparse algebraic kernels. For example, there has been extensive
work on SpMM acceleration [10, 40, 50, 51, 53, 56, 68, 69, 79, 83].
Instead of using well-known compression formats[33, 60, 64, 73],
MatRaptor [69] proposes using a new format called C2SR to acceler-
ate sparse-matrix sparse multiplication (SpGEMM). Tensaurus [70]
is another HBM-based vectorized accelerator that supports SpMV,
SpMM, SpTTMc, and SpMTTKRP kernels by proposing a new com-
pression format for the sparse matrix. Researchers are also induc-
ing sparsity in different fields to take leverage of existing sparse
solutions. [9, 26, 36, 38, 46, 75, 82] are some of the DNN acceler-
ators specifically designed to cater sparse kernels. For example,
SparTen [16] proposes a bitmask representation of non-zero values
and corresponding architecture to support sparsity in CNNs.

7.2 Chasoň for SpMM
Chasoň can also be extended to other sparse algebraic kernels, for
example, SpMM. Mathematically, SpMM is given as:

𝐶 = 𝛼𝐴𝐵 + 𝛽𝐶 (8)

where A is the input sparse matrix, B is the dense matrix, and C
is the output matrix. Similar to the prior OoO HBM-based SpMM
accelerator [68], Chasoň enables SpMM by utilizing 8 HBM chan-
nels for the input matrices 𝐴 and 𝐶 , while allocating 4 channels for
matrix 𝐵. The output is written back through the 8 channels desig-
nated for the 𝐶 matrix. In total, Chasoň utilizes 29 HBM channels.
Because of the dense matrix multiplication, Chasoň requires more
on-chip memory to buffer dense matrix 𝐵. The size of URAM_sh
in an ScUG will be increased to hold partial sums corresponding
to dense matrix B values. The Reduction Unit and Re-order Unit
will be configured trivially to support multiple partial outputs per
URAM_sh.

8 Conclusions
This paper analyzed state-of-the-art PE-aware OoO non-zero sched-
uling scheme and showed that it results in highly underutilized
PEs. The reason being its limited intra-channel scheduling to fill
the stalls in the execution pipeline. We introduced our novel OoO
scheduling scheme, CrHCS, that extended the intra-channel sched-
uling to inter-channel scheduling by allowing data migration across
HBM channels. We also introduced our novel HBM-based stream-
ing architecture, called Chasoň to support CrHCS. Chasoň used
on-chip memory and an adder tree to store and reduce the partial
sums. It also uses a rearrange logic to ensure functionally correct
execution of the underlying kernel. We implemented Chasoň on
AMD Xilinx Alveo U55c and evaluated it on a diverse set of SuiteS-
parse [7] and SNAP [35] matrices. Extensive experiments showed
reduced PE underutilization that resulted in improved performance,
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