
Pipirima: Predicting Patterns in Sparsity to
Accelerate Matrix Algebra

Ubaid Bakhtiar, Donghyeon Joo, and Bahar Asgari
University of Maryland, College Park

{ubaidb, dhjoo98, bahar}@umd.edu

Abstract—While sparsity, a feature of data in many appli-
cations, provides optimization opportunities such as reducing
unnecessary computations, data transfers, and storage, it causes
several challenges, too. For instance, even in state-of-the-art
sparse accelerators, sparsity can result in load imbalance; a
performance bottleneck. To solve such challenges, our key insight
is that if while reading/streaming compressed sparse matrices
we can quickly anticipate the locations of the non-zero values in
a sparse matrix, we can leverage this knowledge to accelerate
processing sparse matrices. To enable this, we propose Pipirima,
a lightweight prediction-based sparse accelerator. Inspired by
traditional branch predictors, Pipirima uses resource-friendly
simple counters to predict the patterns of non-zero values in the
sparse matrices. We evaluate Pipirima based on sparse matrix
vector multiplication (SpMV) and sparse matrix-dense matrix
multiplication (SpMM) kernels on CSR compressed matrices
derived from both scientific computing and transformer models.
On average, our experiments show 6× and 4× speed up over
Tensaurus for SpMM and SpMV, respectively on SuiteSparse
workload. Pipirima also shows 40× speed up over ExTensor for
SpMM. We achieve 8.3×, 48.2× over Tensaurus and ExTen-
sor in lesser sparse transformer workloads. Piprima consumes
5.621mm2 area and 544.93mW power using 45nm technology
with predictor related components as the least expensive ones.

I. INTRODUCTION

Over the years, sparse matrices have become crucial in
various fields such as scientific computing, bioinformatics,
genomics, computer vision, transformers and recommenda-
tion systems. While sparsity offers opportunities to eliminate
unnecessary computations, storage, and data movement, the
effectiveness of handling sparsity depends on several factors
including compression methods [1] such as the frequently-
used compressed sparse row (CSR) or more specific formats
such as diagonal (DIA) [26], block CSR/CSC [33], list of lists
(LIL) [27], and Ellpack (ELL) [15] that suit specific sparsity
patterns or certain implementations. For brevity, this work
targets CSR format as it stands out as the widely adopted
format. However, CSR also comes with some limitations as
we explain throughout this paper.

To efficiently run sparse problems, several domain-specific
architectures (DSAs) [3], [9], [18], [24], [25], [29], [32], [37]
have been developed, targeting sparsity in various domains
such as scientific computing [2], [4], [5], [8], [10], [14], [17],
[23], [28] DNNs [7], [13], [19]–[21], [34], [36] and sparse
attention mechanisms [22], [35], some focusing on very spe-
cific aspects such as dataflow architectures, or implementing
sparse DNNs on dense systolic arrays [11], [16]. In addition
to the domain-specific studies, kernel-specific accelerators have
been proposed to target common sparse matrix algebra, such

as sparse matrix-vector multiplication (SpMV), sparse matrix-
matrix multiplication (SpMM) sparse-sparse matrix multi-
plication (SpGEMM) that offer methods ranging from new
microarchitectural supports for sparsity to enhancing memory
bandwidth utilization. ExTensor [12], for instance, proposes a
hierarchical elimination of computation in sparse environments
by identifying multiplication cases where both operands are
non-zero, thus avoiding unnecessary data transfers. Some of
the prior studies integrate compression format into their co-
optimization cycle. For instance, Tensaurus [30] employs a
novel format for accessing sparse data in a vectorized and
streaming manner, optimizing memory bandwidth usage by
splitting dense vectors into tiles. The exploration of recent
sparse accelerators underscores two major challenges. First,
despite structured sparsity in matrices, these accelerators often
perform standard operations without leveraging these patterns
for quicker computations. Second, fine-grained load imbal-
ance, as a result of unstructured sparsity, hinders the full
utilization of parallelism capabilities as also discussed in [31].

To overcome these challenges with minimal hardware and
latency overhead and without relying on extensive prepro-
cessing, we introduce Pipirima1, a novel approach using a
lightweight, rapid sparsity pattern predictor based on counter-
based prediction (CBP), similar to branch predictors. Pipirima
uses a 1-bit counter to identify matrix structural patterns,
enabling quick identification and omission of standard op-
erations. In non-diagonal matrices, this prediction method
forecasts the number of non-zero (NNZ) values per row in
the streaming blocks to improve load balance and enhance
fine-grained parallelism. Unlike traditional CSR-based com-
putation, Pipirima distributes values based on the state of
the predictor, and includes a straightforward inspector for
the verification process for prediction accuracy and tracking
the states. We also propose a novel architecture with Sigma-
like [24] adder tree and arrangement of multipliers that uses
the predictions to do the SpMM and SpMV operations. We
evaluate Pipirima using a cycle-accurate simulator, conducting
experiments on the CSR-based random and diagonal matri-
ces from SuiteSparse dataset [6], transformer models, and
synthetic random matrices. Our experiments demonstrated a
significant speed up compared to baseline sparse accelerators;
ExTensor [12] and Tensaurus [30] at the expense of very small
memory and computational overhead of CBP predictors and
Prediction Inspectors. The area and power consumption of

1Pipirima is a star in the zodiac constellation of Scorpius.
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Pipirma are also very small, with Prediction Inspectors as the
least expensive components.

II. MOTIVATION & KEY INSIGHT

Challenges & Acceleration Opportunities: We explore the
challenges and opportunities of recent SpMM accelerators
from two angles. (1) The first issue is that even if the sparse
matrices manifest structured sparsity, such as diagonal, the
SpMM accelerators still undergo standard operations instead
of taking shortcuts to quicker results. (2) The second issue
concerns the fine-grained load imbalance, referring to the
uneven distribution of NNZ values among units of on-chip
memory and computational units. This imbalance prevents
sparse matrix algebra from maximizing fine-grained parallel
capabilities of hardware. Our key insight to solve the afore-
mentioned challenges is to use simple prediction mechanisms
to first predict a categorical pattern of sparsity in a matrix and
accordingly skip some computations and second, if the matrix
does not have a pattern, use prediction to enable ideal load
balancing. In the following we provide more details about our
key insights to solve each of the challenges.

0 10 1
1

0
Fig. 1: State diagram for the D/R
Matrix Predictor– States 0 and 1
indicate diagonal and random.

1) D/R Matrix Predic-
tor: Given the structural
peculiarity of diagonal ma-
trices and since the indices
of NNZ values in a diago-
nal matrix are known, we
can bypass some steps of
processing a sparse matrix
(e.g., reading offsets and column indices when CSR format is
used) and directly feed the input values into the compute unit.

To quickly identify the structure of a matrix blocks, we
use a single bit for prediction. As shown in Figure 1, D/R
Matrix Predictor includes two states: (i) Random Matrix (ii)
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Fig. 2: Distribution matters– (a) Serial placement of NNZ
values, resulting in bottleneck. (b) Sub-par parallelism due to
NNZ distribution among two memory partitions. (c) Maximum
parallelism due to perfect NNZ distribution.

Diagonal Matrix, where the prediction problem is mapped to
a binary problem by representing 0 for random matrix and
1 for diagonal matrix. The predictor works by observing the
structure of the blocks – the current block is predicted to be
the same as the previous one.

C N= 𝐶

≠ 𝐶

= 𝑁

= 𝐶
Fig. 3: State diagram for the
NNZ/row Predictor– States C and
N indicate the current and new
number of non-zero/row.

2) NNZ/row Predictor:
Before going through our
solution to the second chal-
lenge, we provide more de-
tails about the challenge
of fine-grained load imbal-
ance starting with review-
ing the importance in load
distribution.
Why distribution is impor-
tant? Here, we assume that
we have a streaming accelerator including a pipeline buffer.
To process a sparse matrix such as the one shown in Figure 2,
for each row, we need to first read the NNZ elements from
the on-chip buffer (i.e., R rx in Figure 2) and then perform
the computation of that row (i.e., C rx in Figure 2), where R
rx and C rx are pipelined. Given such a pipeline, Figure 2
compares three cases: (a) having only one partition of on-chip
memory, which serializes reading the NNZ values, (b) having
more than one partition of on-chip memory but an imperfect
distribution of NNZ values, which reduces the R rx time
but does not completely solve the problem, and (c) a perfect
distribution of NNZ values to as many partitions as they need
which minimizes the R rx and results in a more balance
pipeline. While this figure illustrates the importance of load
balance given a dot-product based computation, a row-wise
or outer-product based implementation suffer from a similar
load-imbalance issue because of sparsity.

Our key insight to achieve the perfect distribution with
minimal costs. Pipirima enables the optimized implementation
shown in Figure 2c. Our key insight to enable this is to
use a simple state machine shown in Figure 3 that predicts
the NNZ values for the current block based on history of the
previous blocks (like branch predictors). Using such a simple
predictor, by just reading a single counter, as we stream values
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Fig. 5: Architecture of Pipirima– The memory controller sends the input data based on the predictions from CBR and
forwards it to the Prediction Inspectors and Compute Units.

and indices, we distribute them evenly.
Why does the proposed solution work? In Figure 4, we

run experiments on some matrices under different partition
sizes from the SuiteSparse dataset to see how many rows
have the same NNZ values as their last u neighbors. We
see that on average 78-85% of the rows are homogeneous
to their last u neighbors in terms of NNZ values. Notably,
when u = 1, meaning only the last neighbor is considered,
the resemblance is most pronounced. This finding motivates
us to exploit the structural coherence of sparse matrices to
ensure perfect distribution and acceleration of computations
associated with sparse matrix algebra.

III. PIPIRIMA

A. High-level Overview of Pipirima

In this work, we focus on accelerating sparse algebra
computations assuming that all the essential data is available
within the on-chip memory. Therefore, we do not delve
deeply into data movement between off-chip memory and
the on-chip network. We implement a tile-based mechanism
in our compute units, which is pivotal for facilitating fine-
grained parallelism in each multiplication operation, making
Pipirima flexible to adapt to different configurations. (details
in Section IV-B). Figure 5 shows the architecture of Pipirima,
the details of which are broken into three groups: memory
components, prediction components, and computational com-
ponents (shown in green, red, blue in Figure 5, respectively).

B. Memory Components

1) Compressed Data Memory (CDM): Compressed Data
Memory (CDM) is an on-chip memory that is responsible
for holding the sparse input data compressed in CSR format.
CDM has a predominantly read-oriented role in the context
of Pipirima. Upon receiving a command from the memory
controller, the CDM retrieves and dispatches the requested
compressed data to the designated unit within the architecture.

2) Dense Data Memory (DDM): Dense Data Memory
(DDM) is responsible for storing the dense matrix or vector
operand. For an n ×m matrix partition, DDM has n sets of
m-size blocks. These blocks are split into TILE.B number of
tiles. Dense matrix is stored in row-major format in these sets.

This improves the spatial locality of a dense matrix such that
when referring to a row-vector and its tile, the compute units
can always go to the specific set without any memory miss.

C. Prediction Components

1) CBP Predictor: The D/R Matrix Predictor and NNZ/row
Predictor reside in this unit. Each of these predictors have one
register that is responsible for holding the current state. The
D/R Matrix Predictor has a 1-bit register as it represents only
two states. For an n×m matrix, the NNZ/row Predictor con-
sists of a ln(m)-bit register, which is an insignificant hardware
cost associated with our CBP predictors. The registers in CBP
predictors receive an input from their corresponding prediction
inspectors to update the states.

2) Prediction Inspector: To keep the states of the predictor
updated, we need to verify whether a prediction was correct or
not and change the state accordingly if needed. In this section,
while our current emphasis lies in detailing the prediction
verification steps tailored for CSR format within Pipirima, the
high-level approach holds significant potential for seamless
adaptation to other compressed formats. Following two pre-
diction inspectors comprise Pipirima:

D/R Prediction Inspector– In a diagonal matrix the consec-
utive values in the column indices and row offset arrays have
a difference of 1 and the size of these arrays is equal to n for
an n× n matrix. Pipirima exploits these simple properties to
inspect the predictions. The prediction verification process is
performed in a pipeline with three stages; compute, compare,
and output In the compute stage, the subtraction operation
is done and the compare stage compares it with the D/R
Matrix Prediction. If the comparison fails, this signifies a
misprediction and Pipirima does the following:

• If prediction=1 (i.e., diagonal), it flushes the pipeline,
resets the values sent to compute units, sets the state
register to 0 (random), triggers the NNZ/row Predictor
and gets the correct data from the memory for the
Prediction Inspector.

• If prediction=0 (i.e., random), it flushes the pipeline,
resets the values sent to the NNZ/row Predictor, sets
the state register to 1 (diagonal), signals the memory
controller, and sends values to the compute unit directly.
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In the case of correct prediction, Pipirima continues with its
normal working without any changes in the state register.

NNZ/row Prediction Inspector– The mechanism of this
inspector is simple, too, as the number of non-zeros for a row
in a block can be calculated easily based on the offsets. If the
comparison is true, this signifies a correct prediction, hence
no change in the state. A misprediction by the the NNZ/row
predictor does not cause any changes in the functionality as
it only defines the load distribution. Therefore, an NNZ/row
misprediction only leads to a less than optimal performance
and detecting such a misprediction only requires updating the
state for the next predictions.

D. Computational Components
1) If-Mul Units (IMU): This unit is responsible for mul-

tiplication but even though the dense matrix is not sparse yet
there can be few zero values that result in wasted number of
multiplication cycles. To avoid this inefficiency, we introduce
a condition using a comparator and multiplexer, to check if the
values from DDM are non-zero or not. If it is equal to zero, it
is pushed to the CBR, else the multiplication units (MU) would
be triggered. IMU does multiplications in parallel fashion
depending on the tiling factor (TILE.B) of dense matrix B.
IMU executes TILE.B number of multiplications in each step
and forwards the data to the CBR, whereas the total number
of steps are b = m

TILE.B . Pipirima is a versatile hardware that
can be configured to implement SpMV as well as SpMM using
dot product or row-wise product. For SpMV, each IMU will
do one values[nnzji ] × DMM [0][colIdx[nnzji ]] operation.
In the case of SpMM, each IMU does one values[nnzji ] ×
DMM [colIdx[nnzji ]][k] operation.

2) Contiguous Block Registers (CBR): The partial outputs
are stored in CBR, the size of which is insignificant as it
only holds TILE.B number of partial outputs. As shown in
Figure 5, each IMU has a corresponding CBR where data is
placed contiguously to improve the spatial locality of CBR for
addition operations. This is for random sparse matrices only
as the output of an SpMM with a diagonal matrix does not
result in‘ partial outputs.

3) Diagonally Sparse Multiplier Unit (DSMU): In case of
diagonal prediction from D/R Matrix Predictor, the memory
controller sends the values array data to the DSMU. In
the case of diagonal sparsity, the multiplication boils down
to values[nnzi] × DDM [i][:] multiplication for each IMU.
There is no need for adders in DSMU. Hence, the output of
multiplications is sent directly to the output buffers.

4) Randomly Sparse Multiplier Unit (RSMU): For random
sparse matrices, there can be multiple non-zero values per
row. The number of non-zero values are already known to
the compute unit by the virtue of NNZ/row Predictor. Based
on the prediction, RSMU reads that number of non-zero
values equal to the prediction and allocate each of them to
an IMU. An IMU multiplies the ith non-zero of jth row with
the corresponding vector from DDM (i.e., values[nnzji ] ×
DDM [colIdx[nnzji ]][:]), and stores the result in the corre-
sponding block in CBR. For both DSMU and RSMU, we

TABLE I: Pipirima configurations for SpMMs and SpMV.
CFG-1 CFG-2 CFG-3

SpMM SpMVHardware Features Row-wise Product Dot-product
TILE.B 4 4 1

RSMU Count# 1 4 1

IMU Count# 10 40 10
Mul-ops/step TILE.B=4 1 1

D/R Matrix Register 1-bitPredictor

NNZ/row Pr. Register ln(Partitionsize) E.g.:
512B × 512B: 9-bit
1KB × 1KB: 10-bit
2KB × 2KB: 11-bit

CBR
Count# 19 76 19

Size/CBR 16B 4B 4B
Total Size 320B 320B 80B

CDM Size 64KB
DDM Size 128KB

Area (mm2) 5.621 5.621 4.925
Power Consumption (mW ) 544.93 544.93 445.42

harness fine-grain parallelism by allowing each IMU to do
TILE.B number of multiplication operations at a time. We
can observe that Pipirima informed by the NNZ values per
row (due to the prediction) can now employ multiple IMUs
concurrently and does not have to segregate offsets load and
values/indices load.

5) CBR-based Adder Tree (CAT): IMUs are doing
TILE.B number of multiplication operations in each step.
These partial outputs are pushed to the corresponding CBR.
We utilize a SIGMA-like [24] CBR-based Adder Tree (CAT),
designed to accumulate results from adjacent CBR units. CAT
runs in parallel to the IMUs, concealing the partial outputs
accumulation latency. Figure 5 shows CAT inside an RSMU.
CAT has ln(nnz) number of stages – if a row has four
non-zeros, CAT will have two adder stages. The contiguous
placement of data within CBRs facilitates addition across
different CBRs without the need for index matching, hence
streamlining the process. The final outputs of the adder tree
are TILE.B elements of the jth row of the output matrix and
are moved to the output buffer.

IV. EXPERIMENTAL SETUP

A. Workloads

SuiteSparse Dataset. We select a combination of random and
diagonal matrices from SuiteSparse [6], few listed in Figure 4
with varying patterns of sparsity. The size of matrices range
from 6M×6M to 1k×1k. We break down, stream, and process
these matrices into 512× 512, 1024× 1024, and 2048× 2048
partitions.
Synthetic Matrices. To analyze the behavior of Pipirima
on highly dense matrices to more precisely investigate its
impact on metrics such as misprediction, we also use synthetic
random matrices of size 4096× 4096 with varying density.
Transformer Workloads. To evaluate Pipirima for a wider
range of applications, we use Sanger’s [22] code to create
sparse matrices from the multi-head operations of transformer
BERT trained on SQuAD v1.1. These matrices have a higher
density (i.e., up to 32%) and are smaller than the SuiteSparse
matrices. Therefore, here we use smaller partition sizes of 16×
16, 32× 32 and 64× 64.
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Fig. 6: Speed up for SuiteSparse matrices– (a), (b), and (c): Random Matrices; (d), (e) and (f): Diagonal Matrices

0

10

20

30

0 1 2 3 4 5 6 7 8 9 10 11 GMSp
ee

du
p 

O
ve

r 
Te

ns
au

ru
s

BERT Blocks #

Row-Wise-Product-Based SpMM 
16x16
32x32
64x64

0
50
100
150

0 1 2 3 4 5 6 7 8 9 10 11 GMSp
ee

du
p 

O
ve

r 
Ex

Te
ns

or

BERT Blocks #

Dot-Product-Based SpMM 
16x16
32x32
64x64

(b)

(a)

Fig. 7: Speed up for Transformer matrices– (a) row-wise
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B. Baselines & Simulation Setup

We use ExTensor [12] as our baseline for dot-product-based
SpMM; and Tensaurus [30] for row-wise-product-base SpMM
as well as SpMV. In both of these baselines, we assume
that the required data for a given computation resides in
the on-chip memory. They are implemented with the same
configurations as presented in their respective papers. We
use a cycle-accurate simulator to model both Pipirima and
baselines. We implement RSMU, DSMU, Prediction Inspector,
and CBP predictor in RTL using Verilog and synthesize them
using Synopsys Design Compiler in TSMC 45nm library. We
use CACTI 7.0 to estimate the area, power, and latency of
the memory components. We are experimenting Pipirima on
SpMM using row-wise and dot product as well as SpMV
kernel. Table I outlines the different configurations of Pipirima.
It also shows the area and power consumption.

V. EVALUATIONS AND RESULTS

Speed up: To examine effective acceleration, improving
which is the driving motivation for Pipirima, Figure 6 repre-
sents the speed up obtained for the SuiteSparse matrices and
Figure 7 depicts the speed up for the multi-attention layers of
BERT. These matrices are denser than SuiteSparse matrices,
giving us an opportunity to evaluate Pipirima on less sparse
matrices. One of the main reasons for achieving performance
improvements over baselines is the parallel computational
operations corresponding to each non-zero value. The prior
knowledge of matrix partition structure – diagonal or ran-
dom and NNZ values per row, allows us to distribute the
multiplication operations among different IMUs– key benefit
of predictions. Pipirima also uses tiling that helps to further

parallelize multiplication operations within each IMU at the
expense of extra multipliers. Tensuarus also uses tiling mech-
anism to accelerate computations. This is the reason the speed
up improvement over Tensaurus is not as much as ExTensor.

Effects of Mispredictions: Mispredictions are inherent
in predictive systems and can impact system performance.
Mispredictions affect the number of memory accesses and
computations performed by Piprima. Figures 10 a, b, and c
show the relationship between these quantities on SuiteSprase
matrices with varying partition sizes. We set up a ratio to study
this behavior.

A ratio less than 1 signifies more overhead of prediction
components, and greater than 1 signifies more overhead in
traditional decompression.

To analyze the behavior on fixed size matrix, with vary-
ing density, we are using synthetic random matrices with
varying partition sizes. Figures 10 d, e, and f repre-
sent a uniform behavior between mispredictions and these
overheads. These graphs also depict the same behavior.
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Fig. 8: Mispredictions (lower is
better) vs. Density for Synthetic
matrices

Figure 8 investigates the
relationship between the
density and misprediction
percentage at different par-
tition sizes. To ensure fair-
ness in the comparison,
synthetic random matrices
with fixed size and varying
partition sizes have been
used for this experiment.
From these results, we ex-
tract two important trade-
offs. First, with the increasing density, percentage mispredic-
tions increase due to the increased probability of different
NNZ values in consecutive rows and decreased row homo-
geneity score. Second, the percentage misprediction increases
with the increasing partition sizes too. This is due to the
increased number of allowed states for the NNZ/row Predictor
state register, making the system vulnerable to more mispre-
dictions.

Overhead Analysis: CBP predictors are cheap and comprise
only one register. However, the Prediction Inspectors incur
memory and computational overhead. Figure 9 shows the
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Fig. 9: Overheads of prediction inspector– (a), (b), and (c) Memory overhead, and (d), (e), and (f) Computational overhead

memory and computational overhead for different datasets.
The overhead increases if the matrices are dense (BERT
blocks) or if they are small in size. (diagonal matrices) We also
observe that these overheads diminishes as the partition size
increases in random matrices. The reason is fewer predictions
are needed for bigger partition sizes and hence, fewer instances
to be verified. For some cases (e.g. Th, Sc, As), the overhead
is relatively bigger, because of their highly random distribution
of non-zeros and smaller number of multiplication operations.
Moreover, we observe that the Prediction Inspectors consume
the least share of total area and power, that is, 0.13%, 0.15% of
the total area and 0.44%, 0.54% of the total power for CFG-1,
CFG-2 and CFG-3 respectively.

VI. RELATED WORK
In recent years, several DSAs has been developed to tackle

the challenges of sparse computations in various domains.
Since sparsity is also prominent in DNNs, several DSAs
address specific challenges in this domain, such as sparse
attention mechanisms [22] and efficient execution on dense
systolic arrays [11], [16]. Other DSAs atarget specific kernels
icnluding SpMV, SpMM, and SpGEMM. Sigma [24], for
instance, addresses irregular and unstructured SpGEMM oper-
ations and employs an adder tree network for efficient partial
sum accumulation. ExTensor reduces wasted computations by
identifying multiplication cases with non-zero operands ahead
of time [12]. SpArch [37] optimizes the data locality of both
input and output matrices in the SpMM kernel, employing a
highly parallelized streaming-based merger and a condensed
data representation to reduce redundant access to zero val-
ues. MatRaptor [29], a SpGEMM accelerator, uses row-wise
products for high data reuse and introduces a new compression
format, C2SR. This compression format provides information
about the NNZ values per row. However, load-balancing in
MatRaptor still relies on round-robin allocation which does
not always guarantee a perfect load balance. Another row-
wise product-based study [18] proposes a counter-based matrix
tiling scheme specific to CSR-compressed format to enhance
parallelism in SpMM.

VII. CONCLUSION
This paper proposed Pipirima, a novel approach to acceler-

ate sparse matrix algebra. By effectively predicting the struc-
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Fig. 10: Memory accesses and computation intensity ratio
(higher is better) vs. Mispredictions (%)– (a), (b), and (c)
represent the SuiteSparse non-diagonal matrices with partition
sizes 512, 1024, 2048; (d), (e), and (f) represent the synthetic
random matrices with partitions of 128, 256, 512 respectively.

tural characteristics of matrices, Pipirima enabled the tile based
parallel SpMV and SpMM kernels. Extensive experimentation
demonstrated Pipirima’s remarkable acceleration capabilities
compared to prior sparse accelerators. Importantly, Pipirima
achieved these gains while maintaining minimal memory and
computational overhead in its prediction components, making
it a valuable asset for a wide range of applications.
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