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Abstract—Sparse matrix-vector multiplication (SpMV) is a
critical operation across numerous application domains. As
a memory-bound kernel, SpMV does not require a complex
compute engine but still needs efficient use of available compute
units to achieve peak performance efficiently. However, sparsity
causes resource underutilization. To efficiently run SpMV, we
propose Segin that leverages a novel fine-grained multi-tenancy,
allowing multiple SpMV operations to be executed simultaneously
on a single hardware with minimal modifications, which in turn
improves throughput. To achieve this, Segin employs hierarchical
bitmaps, hence a lightweight logical circuit, to quickly and
efficiently identify optimal pairs of sparse matrices to overlap.
Our evaluations demonstrate that Segin can improve throughput
by 1.92×, while enhancing resource utilization.

Index Terms—SpMV, Multi-Tenancy, Resource Efficiency

I. INTRODUCTION

SPARSE matrix-vector multiplication (SpMV) is critical
in fields such as scientific computing, graph analytics,

and machine learning, where large, sparse matrices dominate.
The high proportion of zero elements leads to challenges
such as irregular memory access, limiting hardware efficiency.
These challenges have driven the development of specialized
accelerators and optimization techniques to improve SpMV
performance [1], [3], [4], [7], [10]. For example, instance,
deployment of balanced tree structures [3], [7] or HBM-based
FPGA accelerators [1], [4], [10], streamlines data retrieval and
improves memory bandwidth usage.

Despite these advancements, the focus of SpMV acceler-
ators remains on alleviating memory accesses, leaving the
underutilization of hardware a significant inefficiency. In par-
ticular, in applications such as attention operations in machine
learning or solvers in scientific computing, on one hand, a vec-
tor often needs to be multiplied by multiple sparse matrices;
while on the other hand, as a result of sparsity, computational
units frequently remain idle, leading to significant resource
underutilization. To address this, we propose Segin1, a fine-
grained multi-tenant approach that leverages idle resources to
run multiple sparse workloads simultaneously, synergistically
reducing inefficiencies and improving throughput.

Segin leverages a lightweight bitmap-based search mecha-
nism to quickly and efficiently identify overlapping indices.
Since directly searching large matrices for optimal overlap
indices is impractical, we use a hierarchical bitmap approach.
In this method, elements within chunk size × chunk size
blocks are mapped to a single element in a smaller bitmap
matrix. This reduces the search space and accelerates the pro-
cess. By efficiently identifying and pairing sparse workloads
for hardware processing, this approach significantly enhances
the overall efficiency of SpMV operations.

1Segin is a star in the northern constellation of Cassiopeia.

To implement Segin, we apply minimal changes to a tar-
geted SpMV accelerator to select effective computations (non-
zero values) and skip non-effective ones in each computation
round. Additionally, the architecture tracks the results of
each workload using a simple tagging mechanism. These
optimization lead to more efficient utilization of computa-
tional resources. Additionally, since we can parallelize the
computation of two or more matrices in a single round,
throughput, defined as the number of SpMV completed per
unit of time, is increased, too. In this work, we demonstrate
the overlapping of two matrices, and the results indicate that
throughput has increased by 1.92× compared to conventional
output stationary systolic arrays.

II. KEY INSIGHTS
To improve resource underutilization caused by sparsity

in SpMV, our key insight is to leverage workload sparsity
to enable processing multiple SpMV kernels concurrently in
hardware rather than sequentially. By overlapping multiple
workloads into a combined workload, which we call fine-
grained multi-tenancy, the zeros of one workload are likely
covered by the non-zeros of another, resulting in a denser
workload. Mapping this denser workload to hardware reduces
cycles spent processing zero elements, improving hardware
utilization. Moreover, processing two SpMV kernels simulta-
neously allows completion in the same number of cycles as a
single kernel in conventional hardware, boosting throughput.

Combining two or more matrices produces two scenarios:
(1) non-overlapping indices, where zero elements in one ma-
trix are covered by non-zero elements in another, creating an
ideal combined matrix; and (2) overlapping non-zero elements,
where some indices are shared by multiple matrices. Our
approach, Segin, handles both scenarios effectively. By adding
a small hardware addition into the computation unit of the
systolic array, we show how Segin efficiently resolves over-
lapping cases. The fine-grained multi-tenancy approach, can
enable the processing of two or more SpMV kernels in parallel.
Increasing the number of workloads brings both opportunities
and challenges. In this work, we focus on processing a pair
of workloads simultaneously.

III. SEGIN
Figure 1 shows a high-level overview of Segin, with steps on

both the host and hardware sides. On the host side (Figure 1a),
workloads are grouped into pairs of matrices. These matrices,
stored in CSR format, are converted into hierarchical bitmap
matrices and sent to the search unit. On the hardware side
(Figure 1b), the search engine scans the matrix rows to find
pairs with minimal overlaps, saving them in the pair buffer to
be processed by the processing elements (PEs). Once all pairs
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Fig. 1. High-level overview of Segin at (a) host, which includes grouping
the matrices and converting CSR to hierarchical bitmap; and (b) the hardware
including the search engine, the overlap handler and merge unit.

are found, the main computation begins by the PEs and the
overlap handler, which deals with rare overlaps. While one set
of matrices is being processed, the host sends the next group
to the search unit, starting the search phase simultaneously.
After computations, results from the overlap handler and
PEs are merged by the merge unit, producing two vectors
corresponding to the SpMV kernel of each input matrix. This
process forms a pipeline with four stages: loading matrices,
searching, computation, and merging results. The last three
stages are collectively the computation stage.

A. Preparing the Hierarchical Bitmaps
Bitmap compression techniques for sparse matrix repre-

sentation efficiently store and manage matrices with many
zero elements by leveraging sparsity patterns, thereby reducing
memory and storage requirements. A bitmap, which is a 1-
bit array, indicates the positions of non-zero elements and is
paired with a list of these values. More efficient and flexible
methods, such as hierarchical bitmaps where each bit repre-
sents a chunk of non-zero values, have been explored in the
hardware and software design of prior sparse accelerators [6].
In our work, Segin utilizes hierarchical bitmapping with a
granularity of chunk size, enabling quick searches and sup-
porting multi-tenancy. Choosing an appropriate chunk size
impacts the search engine’s efficiency, particularly in achieving
a 100% non-overlap ratio between rows. A larger chunk size
aggregates multiple elements, potentially reducing non-overlap
opportunities as it combines zero and non-zero values into a
single 1-bit representation. For instance, a chunk size of two
would represent a chunk with three zero elements and one
non-zero element as one, limiting the ability to exploit zero
values for non-overlap. The chunk size also affects the search
engine’s latency, as a smaller bitmap matrix reduces the search
window. Based on our analysis (detailed in Section V), a
chunk size of 32 strikes the optimal balance between latency
reduction and maximizing the non-overlap ratio.

B. Finding the Overlaps
To find the best match for each row across matrices within

a group, Segin’s search algorithm operates on bitmap repre-
sentations of the matrices and begins by dividing them into
rows. An initial buffer is created, containing all rows from
both matrices. The process starts with the first row, performing
an AND operation between this row and each subsequent
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Fig. 2. Microarchitecture details of (a) PEs and (b) the Overlap Handler,
within the computation stage.

row in the buffer. For every ‘1’ resulting from the AND
operation, a num overlaps counter is incremented. Once all
elements of the row are processed, num overlaps is compared
to min overlaps, which tracks the fewest overlaps encountered
so far. If num overlaps is smaller, min overlaps is updated,
and the current row is recorded as the best match. The best
matching pair, consisting of their matrix numbers and row
indices, is added to the final result buffer. The matched rows
are then removed from the initial buffer. The algorithm repeats
this process until all rows are paired.

C. Mechanisms and Architecture
Segin’s fine-grained multi-tenancy method is adaptable

across various architectures, such as adder trees, systolic ar-
rays, or scalar processing elements. Depending on the baseline
architecture, computational units can be modified to handle
multiple SpMV kernels concurrently without compromising
functionality. In this paper, we target a one dimentional
systolic array. Figure 2 illustrates the details of the Segin
computation stage, covering modifications to the PEs, the
overhead handler (OH), and the merge unit as explained below.

1) Processing Elements (PEs): Segin uses an output-
stationary systolic array, where the vector operand streams left
to right and multiplies with matrix rows streaming from the
top, computing the SpMV kernel. To support multitenancy,
each PE processes two inputs from the same or different
matrices, using a “find non zero one” module to identify
nonzero elements for multiplication. The module also tags
outputs with matrix IDs (mat id) and row indices (row ind)
for partial sum updates. Overlapping workloads trigger the
“activate OH” flag, connecting the PE to the OH module.

2) Overlap Handler (OH): addresses rare cases where
two nonzero values overlap in a PE, operating parallel to
the main systolic array to avoid latency. It buffers inputs
(mat id, row index, vector, and matrix values) and computes
results when the “activate OH” flag is triggered. To minimize
memory overhead, a small, fixed-size buffer (OH size) is used,
with a search phase to update or add elements as needed.

3) Merge Unit: combines outputs from the OH and sys-
tolic array. It matches tags to accumulate results or appends
unmatched elements from the OH. This ensures the results
efficiently integrate contributions from both components.

IV. EXPERIMENTAL SETUP
Simulation Infrastructure: We model Segin and a conven-

tional output stationary one-dimensional systolic array (CSA)
baseline using a cycle-level simulator that incorporates unit
latencies from Xilinx Alveo U55C FPGA, operating at a 100
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MHz clock frequency. We use the HBM on the Alveo U55C
FPGA, offering 460 GB/s memory bandwidth. Additionally,
to evaluate Segin’s area and power, we implement its PEs and
the baseline in RTL using Verilog, synthesizing them with
Synopsys Design Compiler in the NANGATE 45nm library.
We compare Segin’s PE underutilization, throughput, area,
power, and latency against the CSA and GPU implementations
to assess performance and resource efficiency. For GPU com-
parisons, we analyze resource underutilization on an NVIDIA
GTX 1650 Super using CUDA driver version 11.6 and the
Nvidia Nsight toolkit. SpMV performance is evaluated with
the cuSparse library using Nvidia’s sample code.

Datasets and Hardware Configurations: For evaluations,
we use the SuiteSparse matrix collection and synthetic ma-
trices with sparsity levels ranging from 0.1 to 0.98, ensuring
diverse structural properties and a wide spectrum of sparsity.
We also include some machine learning workloads that orig-
inate from the query projection matrices of LLaMA-2 7B,
specifically layers 0 to 7. These workloads are pruned to
a given sparsity (30%, 50%, and 70% in this paper) using
Wanda’s pruning algorithm [11] with no constraints on the
sparsity pattern. Segin processes these datasets in 4k × 4k
chunks, with the NNZ column indicating the number of non-
zero elements in each chunk. The performance of Segin is
influenced by the following parameters:
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#PEs: defines the systolic array size,
which is set to 4K.

OH size: determines the size of the
buffer in OH, which depends on the number
of overlapping elements we have in each
timestep. Figure 3 illustrates the distribu-
tion of OH size needed for our datasets,
which indicates that the largest buffer re-
quired to store data from PEs – including
vector value, matrix value, matrix id, and
row index– is 32. Therefore, we set our OH size to 32 to
ensure sufficient capacity and provide a safety margin.

Chunk size: Specifies the size of the hierarchical bitmap
matrix (bitmap size = mat size/chunk size). A chunk size of
32 balances search engine latency and the non-overlap ratio.

V. EVALUATIONS
Throughput: We define throughput as the number of SpMV

kernels completed in one clock cycle. Since in Segin we
overlap the computations of two SpMV kernels, we achieve
1.92× improvement in throughput compared to processing the
two SpMV kernels sequentially in a CSA. This improvement
is consistent across different pairs because, in a systolic array,
the number of cycles required to process an SpMV kernel is
fixed and independent of the workload characteristics.

Latency: Figure 4 shows the latency of two stages of
the overall pipeline in Segin for different datasets. As is
evident in this figure, the computation stage latency in Segin
is similar to the loading stage. However, there are cases, such
as the pair of (pf2177 - sp-0.96), where the latency of the
compute stage is slightly more than the load stage. Overall,
while taking advantage of Segin, we can still utilize HBM
bandwidth, but the computation stage might need to stall in
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Fig. 4. Latency of pipeline stages of Segin, including the computation stage
and loading from memory. “sp” stands for sparsity.

the cases where we have denser matrices in the group. In
real-world applications with matrices of varying sparsity, the
pipeline achieves better balance. Sparse pairs may cause idle
load stages, while dense matrices make memory loading a
bottleneck, stalling computation. Mixing diverse workloads
balances the pipeline, with occasional stalls in either stage.
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The computation stage consists of
a search unit, PEs, and merge units.
Using Vitis HLS, we evaluate the search
engine’s latency, which is influenced
by the chunk size parameter. A larger
chunk size reduces the bitmap matrix
size, search window, and loop size,
lowering latency. Figure 5 shows how
varying the chunk size from 16 to 512
affects computation latency. We fix the
chunk size to 32. Experiments show the
search unit’s latency dominates the computation stage but does
not hinder full utilization of HBM bandwidth.

In Segin, loading from memory occurs through an HBM
with a bandwidth of 460 GB/s. For each pair of workloads, we
need to send the bitmap matrix (4k × 4k) and the actual 32-
bit floating point values for sparse matrices (NNZ×32 bits).
By utilizing parallel pseudo channels of HBM to transmit
this data, we calculate the load stage latency based on the
maximum amount of data sent in parallel. This includes two
bitmap matrices of size 4k × 4k bits and two values for two
sparse matrices, each with a size of 32× NNZ. The larger of
these determines the load stage latency.

Resource Underutilization: Segin can be applied to two
scenarios. First the general scenario in which the search
algorithm finds the best row pairings, whether from the same
matrix or different matrices based on the minimal overlap, we
refer to this scenarios as the multi-tenancy approach. Second,
a more specific scenario, in which the search algorithm finds
the best row pairings from the same matrix, we call this
scenario the multi-threading approach. Figure 6 illustrates
the comparison of resource underutilization among a CSA,
Segin, and GPU for the first scenario, multi-tenancy. The x-
axis in this figure shows the names of workload pairs, with
each pair consisting of a SuiteSparse matrix paired with a
synthetic matrix by the grouping stage at the host, shown
in Figure 1. The sparsity level for each synthetic matrix is
indicated in the pair label; for example, “sp-0.6” means that
60% sparsity. As Figure 6 shows, Segin significantly reduces
resource underutilization compared to CSA. Additionally, in
many cases, Segin’s PE underutilization is lower than that of

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2025.3562120

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 22,2025 at 15:11:10 UTC from IEEE Xplore.  Restrictions apply. 



4

0
20
40
60
80

100
Re

so
ur

ce
 

un
de

ru
til

iz
at

io
n 

(%
)

lo
w

er
 is

 b
et

te
r

CSA GPU Segin

Fig. 6. Resource underutilization for multi-tenancy approach. “sp”: sparsity.

the GPU. On average, resource underutilization is improved by
14% compared to CSA and 6% compared to the GPU. This
improvement results from pairing two sparse matrices with
different levels of sparsity. For instance, Segin can improve
resource underutilization of a pair of a matrix with a sparsity
level of lower than 0.2 and SuiteSparse matrices up to 42%.
However, if the random grouping process on the host side
results in matrices with similar levels of sparsity in the same
group, such as (t520 - sp-0.98), the improvement of Segin over
CSA is not significant, and the GPU can utilize its resources
more efficiently. Therefore, to leverage the benefits of Segin,
we need a set of matrices on the host side with diverse sparsity.
The results for the second scenario, multi-threading, shown
in the Figure 7, demonstrate its effectiveness in optimizing
resource utilization across targeted LLaMA-2 7B layers. Our
experiments, conducted across different sparsity levels (from
30% to 70%, indicate that Segin can achieve up to a 3×
improvement in resource utilization.

Area and Power: Table I lists the area and power of a single
PE in Segin and CSA, suggesting both the area and power
of Segin have increased by factors of approximately 1.1×
and 1.4×, respectively. Therefore, we can conclude that the
modifications to the PEs for Segin result in negligible power
and area overhead. Also, implementing the Segin search unit
in hardware results in an area of approximately 10.65× that
of a single Segin PE, which translates to an overall area of
about 0.24% of a total 4K-sized systolic array.

TABLE I
AREA AND POWER OF PES IN SEGIN AND CSA

Segin CSA Overhead
Area (µm2) 12211.185955 11326.555454 1.0781
Power (mW) 1.0979 0.7999 1.37254

VI. RELATED WORK

This section reviews prior efforts related to Segin, clarifying
its position within the state of the art. First, systolic arrays,
traditionally designed for dense computations, have been ex-
tended to support sparsity in studies such as Sparse-TPU [5],
which employs an offline matrix packing that condenses sparse
matrices before computation, improving PE utilization and re-
ducing redundant MAC operations. However, Sparse-TPU re-
lies on a preprocessing step to pack matrices before execution,
making it less adaptable for dynamically changing workloads.
Additionally, non-blocking simultaneous multithreading (NB-
SMT) [8], [9] has been proposed to increase hardware uti-
lization in deep learning accelerators. The SySMT framework
applies NB-SMT to output-stationary systolic arrays (OS-
SA), dynamically sharing resources among multiple execution
flows. By temporarily reducing computation precision, SySMT
maximizes hardware occupancy for deep learning workloads
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Fig. 7. Resource underutilization for multi-threading approach.
with minimal accuracy. Finally, while recent studies have
explored executing multiple workloads on single hardware
accelerators – primarily through scheduling or partitioning for
multi-DNN scenarios [2], [12], [13] – their techniques are
coarse-grained, which sets them apart from Segin.

VII. CONCLUSIONS
This paper proposed Segin, a fine-grained multi-tenancy

approach that reveals the benefits of overlapping sparse work-
loads through a hierarchical bitmap mechanism. The key
insights underscored how strategic pairing of sparse matrices
can lead to more efficient resource utilization, which can
inspire novel directions for optimizing computation in SpMV.
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