
As data volumes continue to grow exponentially across 
domains from scientific computing and graph analytics to 
machine learning, computation has become increasingly 
dependent on the exploitation of sparsity. Sparsity, referring 
to the prevalence of zeros in data, has evolved into a 
deliberate design goal, playing a critical role in minimizing 
data movement, reducing memory footprint, and accelerating

Data Scheduling. This research proposes low-cost, novel data scheduling and placement strategies to enable the 
streamlined execution of sparse kernels by improving the resource utilization of compute cores.

1. One such strategy is employed in Chasoň, a sparse accelerator designed to enhance processing element (PE) 
efficiency via a novel data scheduling scheme called Cross-HBM Channel Out-of-Order Scheduling (CrHCS). 
CrHCS extends intra-channel non-zero scheduling to the inter-channel domain, enabling migration of non-zero 
values across HBM channels. This migration helps mitigate PE stalls by ensuring a more balanced and 
continuous supply of useful data (non-zeros) to idle compute units. The architecture of Chasoň is implemented 
on AMD Xilinx Alveo U55C and achieves 301MHz clock frequency. The architecture demonstrates strong 
performance gains: up to  8× over Serpens (state-of-the-art SpMV accelerator), 20.33× over Nvidia RTX 4090 
(cuSparse), 11.65× over Nvidia RTX A6000 (cuSparse) and 2.67× over Intel Core i9 (Intel MKL) respectively.

1. Given the widespread adoption of large language models, this research proposes Lyra, an efficient architecture 
for unstructured sparse LLMs. Unlike fixed matrix partitioning, this research advocates for dynamic matrix 
partitioning such that the number of non-zeros within a tile remains fixed but the tile size becomes variable. 
Fixing the number of non-zeros per tile ensures high resource utilization, translating directly into improved 
performance and energy efficiency. The architecture of Lyra is implemented on AMD Xilinx Alveo U55C and 
achieves 299MHz clock frequency. Lyra achieves a peak throughput of  99.8	𝐺𝐹𝐿𝑂𝑃/𝑠	and delivers up to 
4.6	𝐺𝐹𝐿𝑂𝑃/𝑠	𝑝𝑒𝑟	𝑤𝑎𝑡𝑡	across Llama2-13B, Llama2-7B, OPT-125M and OPT-2.7B models. Lyra  exhibits	 2×
better resource utilization than DFX (state-of-the-art LLM accelerator) and reduces the latency by 5×. Lyra 
offers up to 9× better performance-per-watt than Nvidia RTX Ada 6000 and Nvidia RTX 4080.
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computation. However, the existence of sparsity also presents a significant architectural challenge: poor resource 
utilization, which leads to wasted silicon area and limited system scalability. The issue is exacerbated even more in 
the twilight of Moore's law when the emphasis shifts from simply adding more transistors to extracting more 
performance from existing hardware. General-purpose processors and specialized accelerators often fail to achieve 
the theoretical gains offered by sparsity due to underutilized hardware resources. To close the gap between peak and 
achievable performance, techniques such as data scheduling, multi-tenancy, and dynamic reconfiguration must be 
integrated into sparse applications hardware to mitigate the high resource underutilization and consequently, fully 
exploit the benefits of sparsity. This research addresses the challenges caused by sparsity by demonstrating that data 
scheduling, dynamic reconfiguration, and multi-tenancy are complementary techniques that significantly improve 
resource utilization in sparse applications, each targeting distinct inefficiencies. By applying these techniques across 
different layers of the hardware stack, this research demonstrates substantial improvements in utilization and 
throughput, building toward a future where sparse acceleration is not only performant but scalable and adaptable. 
Figure 1 provides an overview of this research, along with the venues where the work has been peer-reviewed and 
published.

Figure 1. Publications of this research in different venues



3. This research also introduces Pipirima, a prediction-driven on-chip memory scheduling architecture. This 
approach employs a lightweight, rapid sparsity pattern predictor based on counter-based prediction (CBP), 
similar to branch predictors. The prediction method predicts the structural properties of the sparse matrix and 
schedules the data on runtime on the on-chip memory blocks. This allows for fine-grained parallelism among 
the compute while minimizing resource underutilization. Pipirima demonstrated a significant speed up 
compared to baseline sparse accelerators; ExTensor and Tensaurus at the expense of very small memory and 
computational overhead of prediction related components.

Dynamic Reconfiguration. This research enables dynamic reconfiguration based on runtime profiling of the structural 
characteristics of the underlying sparse workloads and the quality of intermediate outputs to improve resource 
utilization of the sparse workload.  This research proposes Acamar, a dynamically reconfigurable FPGA-based 
design that has the ability to not only reconfigure the FPGA fabric to different solvers but also reconfigure the sparse 
computational unit based on the structural properties of coefficient matrix 𝐴. To achieve this, Acamar can seamlessly 
switch between three widely used iterative solvers: Jacobi iterative method (JB), conjugate gradient (CG), and bi-
conjugate gradient-stabilized (BiCG-STAB). Moreover, Acamar can reconfigure the sparse computational unit, to 
ensure enhanced resource utilization. Acamar also offers a multi-level iterative decision chain to minimize the 
reconfiguration rate to incur less reconfiguration overhead. Acamar is an FPGA-based design owing to the ability of 
FPGAs to offer partial dynamic reconfiguration. Experiments show improvement in resource utilization and 
performance over a static design and Nvidia GTX 1650 Super GPU.

Multi-Tenancy. This research focuses on extend the single workload execution model of sparse accelerators, which 
pose challenges in multi-tasking scenarios common in real-world deployments. When multiple workloads need to be 
executed sequentially, the host must repeatedly reconfigure the accelerator—reloading data into off-chip memory 
such as HBM for each job. This constant setup and teardown process introduces substantial latency and bandwidth 
overhead, severely impacting throughput and amplifying already prevalent resource underutilization. This research 
proposes Segin, a fine-grained multi-tenant approach that leverages idle resources to run multiple sparse workloads 
simultaneously, synergistically reducing inefficiencies and improving throughput. Segin leverages a lightweight 
bitmap-based search mechanism to quickly and efficiently identify overlapping indices using a hierarchical bitmap 
approach. 

Future Work. These advancements pave the way 
for future work that primarily focuses on 
building hardware solutions and accelerators for 
sparse applications that supports efficient data 
scheduling, dynamic reconfiguration and multi-
tenancy achieving maximum performance given 
limited resources. The hardware solutions 
proposed in this research lay the foundation for

Figure 2. Roadmap of future works and tentative venues

improving resource utilization as a sustainable alternative to relying on continued transistor scaling in the 
post-Moore’s Law era. The future trajectory of this research is structured into four cohesive projects. The 
first project aims to extend multi-tenancy into state-of-the-art sparse stencil accelerators, enabling concurrent 
execution of multiple sparse workloads and addressing existing limitations in throughput and resource 
utilization. The second project focuses on employing the concepts of dynamic reconfiguration to accelerate 
generative AI models like LLMs and Vision transformers. Building upon these efforts, the third project seeks 
to unify data scheduling, dynamic reconfiguration, and multi-tenancy into a holistic, full-stack accelerator 
architecture for generative AI—designed for high performance, energy efficiency, and real-world 
deployment in environments like data centers. Finally, the fourth project will culminate in the development 
of a community-accessible cycle-accurate simulator, built upon the architectural insights gathered 
throughout this research. This simulator will allow users to model the performance and behavior of sparse 
accelerators across varying configurations and workloads. A high-level roadmap and tentative venues for 
these projects are outlined in Figure 2


